
1

Rust Language Cheat Sheet
18. March 2024

Contains clickable links to The Book , Rust by Example , Std Docs , Nomicon , Reference .

Data Structures

Data types and memory locations defined via keywords.

Example Explanation

struct S {} Define a struct with named fields.

 struct S { x: T } Define struct with named field x of type T .

 struct S (T); Define "tupled" struct with numbered field .0 of type T .

 struct S; Define zero sized unit struct. Occupies no space, optimized away.

enum E {} Define an enum, c. algebraic data types, tagged unions.

 enum E { A, B (), C {} } Define variants of enum; can be unit- A , tuple- B () and struct-like C{} .

 enum E { A = 1 } If variants are only unit-like, allow discriminant values, e.g., for FFI.

 enum E {} Enum w/o variants is uninhabited, can't be created, c. 'never'

union U {} Unsafe C-like union for FFI compatibility.

static X� T = T(); Global variable with 'static lifetime, single memory location.

const X� T = T(); Defines constant, copied into a temporary when used.

let x: T; Allocate T bytes on stack bound as x . Assignable once, not mutable.

let mut x: T; Like let , but allow for mutability and mutable borrow.

 x = y; Moves y to x , inval. y if T is not Copy , and copying y otherwise.

 Bound variables live on stack for synchronous code. In async {} they become part of async's state machine, may reside on heap.
 Technically mutable and immutable are misnomer. Immutable binding or shared reference may still contain Cell , giving interior mutability.

Creating and accessing data structures; and some more sigilic types.

Example Explanation

S { x: y } Create struct S {} or use 'ed enum E��S {} with field x set to y .

S { x } Same, but use local variable x for field x .

S { ��s } Fill remaining fields from s , esp. useful with Default��default() .

S { 0� x } Like S (x) below, but set field .0 with struct syntax.

S (x) Create struct S (T) or use 'ed enum E��S () with field .0 set to x .

S If S is unit struct S; or use 'ed enum E��S create value of S .

E��C { x: y } Create enum variant C . Other methods above also work.

() Empty tuple, both literal and type, aka unit.

(x) Parenthesized expression.

(x,) Single-element tuple expression.

(S,) Single-element tuple type.

[S] Array type of unspec. length, i.e., slice. Can't live on stack.

BK EX STD NOM REF
➕

BK EX STD REF

NOM

BK EX REF

REF

REF ↓🝖

REF 🝖

BK EX REF

BK EX REF

1

BK EX 2

STD

1 BK EX REF

2 STD

STD

STD

EX STD REF

EX STD REF *

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/std
https://doc.rust-lang.org/std
https://doc.rust-lang.org/nightly/nomicon/
https://doc.rust-lang.org/nightly/nomicon/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/book/ch05-00-structs.html
https://doc.rust-lang.org/book/ch05-00-structs.html
https://doc.rust-lang.org/stable/rust-by-example/custom_types/structs.html
https://doc.rust-lang.org/stable/rust-by-example/custom_types/structs.html
https://doc.rust-lang.org/std/keyword.struct.html
https://doc.rust-lang.org/std/keyword.struct.html
https://doc.rust-lang.org/stable/reference/expressions/struct-expr.html
https://doc.rust-lang.org/stable/reference/expressions/struct-expr.html
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
https://doc.rust-lang.org/book/ch06-01-defining-an-enum.html
https://doc.rust-lang.org/stable/rust-by-example/custom_types/enum.html#enums
https://doc.rust-lang.org/stable/rust-by-example/custom_types/enum.html#enums
https://doc.rust-lang.org/stable/reference/items/enumerations.html
https://doc.rust-lang.org/stable/reference/items/enumerations.html
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Tagged_union
https://doc.rust-lang.org/stable/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations
https://doc.rust-lang.org/stable/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations
https://doc.rust-lang.org/stable/reference/glossary.html#uninhabited
https://doc.rust-lang.org/stable/reference/glossary.html#uninhabited
https://doc.rust-lang.org/stable/reference/items/unions.html
https://doc.rust-lang.org/stable/reference/items/unions.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#accessing-or-modifying-a-mutable-static-variable
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#accessing-or-modifying-a-mutable-static-variable
https://doc.rust-lang.org/stable/rust-by-example/custom_types/constants.html#constants
https://doc.rust-lang.org/stable/rust-by-example/custom_types/constants.html#constants
https://doc.rust-lang.org/stable/reference/items/static-items.html#static-items
https://doc.rust-lang.org/stable/reference/items/static-items.html#static-items
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html#constants
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html#constants
https://doc.rust-lang.org/stable/rust-by-example/custom_types/constants.html
https://doc.rust-lang.org/stable/rust-by-example/custom_types/constants.html
https://doc.rust-lang.org/stable/reference/items/constant-items.html
https://doc.rust-lang.org/stable/reference/items/constant-items.html
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html
https://doc.rust-lang.org/stable/rust-by-example/variable_bindings/mut.html
https://doc.rust-lang.org/stable/rust-by-example/variable_bindings/mut.html
https://doc.rust-lang.org/std/marker/trait.Copy.html
https://doc.rust-lang.org/std/marker/trait.Copy.html
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html
https://doc.rust-lang.org/stable/rust-by-example/variable_bindings.html
https://doc.rust-lang.org/stable/rust-by-example/variable_bindings.html
https://doc.rust-lang.org/stable/reference/variables.html
https://doc.rust-lang.org/stable/reference/variables.html
https://doc.rust-lang.org/std/cell/index.html
https://doc.rust-lang.org/std/cell/index.html
https://doc.rust-lang.org/default/trait.Default.html
https://doc.rust-lang.org/default/trait.Default.html
https://doc.rust-lang.org/std/primitive.unit.html
https://doc.rust-lang.org/std/primitive.unit.html
https://doc.rust-lang.org/stable/rust-by-example/primitives/tuples.html
https://doc.rust-lang.org/stable/rust-by-example/primitives/tuples.html
https://doc.rust-lang.org/std/primitive.tuple.html
https://doc.rust-lang.org/std/primitive.tuple.html
https://doc.rust-lang.org/stable/reference/expressions/tuple-expr.html
https://doc.rust-lang.org/stable/reference/expressions/tuple-expr.html
https://doc.rust-lang.org/stable/rust-by-example/primitives/array.html
https://doc.rust-lang.org/stable/rust-by-example/primitives/array.html
https://doc.rust-lang.org/std/primitive.slice.html
https://doc.rust-lang.org/std/primitive.slice.html
https://doc.rust-lang.org/stable/reference/types/slice.html
https://doc.rust-lang.org/stable/reference/types/slice.html
javascript:toggle_legend();

2

Example Explanation

[S; n] Array type of fixed length n holding elements of type S .

[x; n] Array instance (expression) with n copies of x .

[x, y] Array instance with given elements x and y .

x[0] Collection indexing, here w. usize . Impl. via Index, IndexMut.

 x[��] Same, via range (here full range), also x[a��b] , x[a���b] , … c. below.

a��b Right-exclusive range creation, e.g., 1��3 means 1, 2 .

��b Right-exclusive range to without starting point.

���b Inclusive range to without starting point.

a���b Inclusive range, 1���3 means 1, 2, 3 .

a�� Range from without ending point.

�� Full range, usually means the whole collection.

s.x Named field access, might try to Deref if x not part of type S .

s.0 Numbered field access, used for tuple types S (T) .

 For now, pending completion of tracking issue.

References & Pointers

Granting access to un-owned memory. Also see section on Generics & Constraints.

Example Explanation

&S Shared reference (type; space for holding any &s).

 &[S] Special slice reference that contains (address , count).

 &str Special string slice reference that contains (address , byte_length).

 &mut S Exclusive reference to allow mutability (also &mut [S] , &mut dyn S , …).

 &dyn T Special trait object reference that contains (address , vtable).

&s Shared borrow (e.g., addr., len, vtable, … of this s , like 0�1234).

 &mut s Exclusive borrow that allows mutability.

�const S Immutable raw pointer type w/o memory safety.

 �mut S Mutable raw pointer type w/o memory safety.

 &raw const s Create raw pointer w/o going through ref.; c. ptr:addr_of!()

 &raw mut s Same, but mutable. Needed for unaligned, packed fields.

ref s Bind by reference, makes binding reference type.

 let ref r = s; Equivalent to let r = &s .

 let S { ref mut x } = s; Mut. ref binding (let x = &mut s.x), shorthand destructuring version.

�r Dereference a reference r to access what it points to.

 �r = s; If r is a mutable reference, move or copy s to target memory.

 s = �r; Make s a copy of whatever r references, if that is Copy .

 s = �r; Won't work if �r is not Copy , as that would move and leave empty.

 s = �my_box; Special case for Box that can move out b'ed content not Copy .

'a A lifetime parameter, duration of a flow in static analysis.

 &'a S Only accepts address of some s ; address existing 'a or longer.

 &'a mut S Same, but allow address content to be changed.

 struct S<'a> {} Signals this S will contain address with lt. 'a . Creator of S decides 'a .

 trait T<'a> {} Signals any S , which impl T for S , might contain address.

 fn f<'a>(t: &'a T) Signals this function handles some address. Caller decides 'a .

'static Special lifetime lasting the entire program execution.

EX STD REF

REF

STD REF

STD

STD

STD

STD

STD

REF

* RFC

BK STD NOM REF

BK

BK EX STD

EX

BK STD REF

STD 🚧🝖

🚧 🝖

EX 🗑

↓

BK STD NOM

🛑

🔗 STD

BK EX NOM REF

https://doc.rust-lang.org/stable/rust-by-example/primitives/array.html
https://doc.rust-lang.org/stable/rust-by-example/primitives/array.html
https://doc.rust-lang.org/std/primitive.array.html
https://doc.rust-lang.org/std/primitive.array.html
https://doc.rust-lang.org/stable/reference/types/array.html
https://doc.rust-lang.org/stable/reference/types/array.html
https://doc.rust-lang.org/stable/reference/expressions/array-expr.html
https://doc.rust-lang.org/stable/reference/expressions/array-expr.html
https://doc.rust-lang.org/std/ops/trait.Index.html
https://doc.rust-lang.org/std/ops/trait.IndexMut.html
https://doc.rust-lang.org/std/ops/struct.Range.html
https://doc.rust-lang.org/std/ops/struct.Range.html
https://doc.rust-lang.org/stable/reference/expressions/range-expr.html
https://doc.rust-lang.org/stable/reference/expressions/range-expr.html
https://doc.rust-lang.org/std/ops/struct.RangeTo.html
https://doc.rust-lang.org/std/ops/struct.RangeTo.html
https://doc.rust-lang.org/std/ops/struct.RangeToInclusive.html
https://doc.rust-lang.org/std/ops/struct.RangeToInclusive.html
https://doc.rust-lang.org/std/ops/struct.RangeInclusive.html
https://doc.rust-lang.org/std/ops/struct.RangeInclusive.html
https://doc.rust-lang.org/std/ops/struct.RangeFrom.html
https://doc.rust-lang.org/std/ops/struct.RangeFrom.html
https://doc.rust-lang.org/std/ops/struct.RangeFull.html
https://doc.rust-lang.org/std/ops/struct.RangeFull.html
https://doc.rust-lang.org/stable/reference/expressions/field-expr.html
https://doc.rust-lang.org/stable/reference/expressions/field-expr.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://rust-lang.github.io/rfcs/1909-unsized-rvalues.html
https://rust-lang.github.io/rfcs/1909-unsized-rvalues.html
https://github.com/rust-lang/rust/issues/48055
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/std/primitive.reference.html
https://doc.rust-lang.org/std/primitive.reference.html
https://doc.rust-lang.org/nightly/nomicon/references.html
https://doc.rust-lang.org/nightly/nomicon/references.html
https://doc.rust-lang.org/stable/reference/types.html#pointer-types
https://doc.rust-lang.org/stable/reference/types.html#pointer-types
https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types
https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow.html
https://doc.rust-lang.org/std/borrow/trait.Borrow.html
https://doc.rust-lang.org/std/borrow/trait.Borrow.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow/mut.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow/mut.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#dereferencing-a-raw-pointer
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#dereferencing-a-raw-pointer
https://doc.rust-lang.org/std/primitive.pointer.html
https://doc.rust-lang.org/std/primitive.pointer.html
https://doc.rust-lang.org/stable/reference/types.html#raw-pointers-const-and-mut
https://doc.rust-lang.org/stable/reference/types.html#raw-pointers-const-and-mut
https://doc.rust-lang.org/std/ptr/macro.addr_of.html
https://doc.rust-lang.org/std/ptr/macro.addr_of.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow/ref.html
https://doc.rust-lang.org/stable/rust-by-example/scope/borrow/ref.html
https://doc.rust-lang.org/book/ch15-02-deref.html
https://doc.rust-lang.org/book/ch15-02-deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/nightly/nomicon/vec-deref.html
https://doc.rust-lang.org/nightly/nomicon/vec-deref.html
https://old.reddit.com/r/rust/comments/b4so6i/what_is_exactly/ej8xwg8
https://old.reddit.com/r/rust/comments/b4so6i/what_is_exactly/ej8xwg8
https://doc.rust-lang.org/std/boxed/index.html
https://doc.rust-lang.org/std/boxed/index.html
https://doc.rust-lang.org/book/ch10-00-generics.html
https://doc.rust-lang.org/book/ch10-00-generics.html
https://doc.rust-lang.org/stable/rust-by-example/scope/lifetime.html
https://doc.rust-lang.org/stable/rust-by-example/scope/lifetime.html
https://doc.rust-lang.org/nightly/nomicon/lifetimes.html
https://doc.rust-lang.org/nightly/nomicon/lifetimes.html
https://doc.rust-lang.org/stable/reference/items/generics.html#type-and-lifetime-parameters
https://doc.rust-lang.org/stable/reference/items/generics.html#type-and-lifetime-parameters

3

Functions & Behavior

Define units of code and their abstractions.

Example Explanation

trait T {} Define a trait; common behavior types can adhere to.

trait T : R {} T is subtrait of supertrait R . Any S must impl R before it can impl T .

impl S {} Implementation of functionality for a type S , e.g., methods.

impl T for S {} Implement trait T for type S ; specifies how exactly S acts like T .

impl !T for S {} Disable an automatically derived auto trait.

fn f() {} Definition of a function; or associated function if inside impl .

 fn f() �� S {} Same, returning a value of type S.

 fn f(&self) {} Define a method, e.g., within an impl S {} .

struct S (T); More arcanely, also defines fn S(x: T) �� S constructor fn.

const fn f() {} Constant fn usable at compile time, e.g., const X� u32 = f(Y) .

async fn f() {} Async function transform, makes f return an impl Future .

 async fn f() �� S {} Same, but make f return an impl Future<Output=S> .

 async { x } Used within a function, make { x } an impl Future<Output=X> .

fn() �� S Function references, memory holding address of a callable.

Fn() �� S Callable Trait (also FnMut , FnOnce), impl. by closures, fn's …

�� {} A closure that borrows its captures, (e.g., a local variable).

 |x| {} Closure accepting one argument named x , body is block expression.

 |x| x + x Same, without block expression; may only consist of single expression.

 move |x| x + y Move closure taking ownership; i.e., y transferred into closure.

 return �� true Closures sometimes look like logical ORs (here: return a closure).

unsafe If you enjoy debugging segfaults; unsafe code.

 unsafe fn f() {} Means "calling can cause UB, YOU must check requirements".

 unsafe trait T {} Means "careless impl. of T can cause UB; implementor must check".

 unsafe { f(); } Guarantees to compiler "I have checked requirements, trust me".

 unsafe impl T for S {} Guarantees S is well-behaved w.r.t T ; people may use T on S safely.

 Most documentation calls them function pointers, but function references might be more appropriate as they can't be null and must point to valid target.

Control Flow

Control execution within a function.

Example Explanation

while x {} Loop, run while expression x is true.

loop {} Loop indefinitely until break . Can yield value with break x .

for x in collection {} Syntactic sugar to loop over iterators.

if x {} else {} Conditional branch if expression is true.

'label: {} Block label, can be used with break to exit out of this block.

'label: loop {} Similar loop label, useful for flow control in nested loops.

break Break expression to exit a labelled block or loop.

 break 'label x Break out of block or loop named 'label and make x its value.

 break 'label Same, but don't produce any value.

 break x Make x value of the innermost loop (only in actual loop).

continue Continue expression to the next loop iteration of this loop.

BK EX REF

BK EX REF

REF

NOM REF 🚧🝖

BK EX REF

BK EX REF

↑ RFC🝖

'18

REF '18 ↓ STD

1 BK STD REF

BK STD

BK EX REF ↓ REF

REF

↓ BK EX NOM REF

↓

1 🔗

REF

REF

BK STD REF

 collection.into_iter()↪ Effectively converts any IntoIterator type into proper iterator first.STD

 iterator.next()↪ On proper Iterator then x = next() until exhausted (first None).STD

REF

RFC 1.65+

EX REF

REF

REF

https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/stable/rust-by-example/trait.html
https://doc.rust-lang.org/stable/rust-by-example/trait.html
https://doc.rust-lang.org/stable/reference/items/traits.html
https://doc.rust-lang.org/stable/reference/items/traits.html
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-supertraits-to-require-one-traits-functionality-within-another-trait
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-supertraits-to-require-one-traits-functionality-within-another-trait
https://doc.rust-lang.org/stable/rust-by-example/trait/supertraits.html
https://doc.rust-lang.org/stable/rust-by-example/trait/supertraits.html
https://doc.rust-lang.org/stable/reference/items/traits.html#supertraits
https://doc.rust-lang.org/stable/reference/items/traits.html#supertraits
https://doc.rust-lang.org/stable/reference/items/implementations.html
https://doc.rust-lang.org/stable/reference/items/implementations.html
https://doc.rust-lang.org/nightly/nomicon/send-and-sync.html
https://doc.rust-lang.org/nightly/nomicon/send-and-sync.html
https://doc.rust-lang.org/stable/reference/special-types-and-traits.html#auto-traits
https://doc.rust-lang.org/stable/reference/special-types-and-traits.html#auto-traits
https://doc.rust-lang.org/book/ch03-03-how-functions-work.html
https://doc.rust-lang.org/book/ch03-03-how-functions-work.html
https://doc.rust-lang.org/stable/rust-by-example/fn.html
https://doc.rust-lang.org/stable/rust-by-example/fn.html
https://doc.rust-lang.org/stable/reference/items/functions.html
https://doc.rust-lang.org/stable/reference/items/functions.html
https://doc.rust-lang.org/book/ch05-03-method-syntax.html
https://doc.rust-lang.org/book/ch05-03-method-syntax.html
https://doc.rust-lang.org/stable/rust-by-example/fn/methods.html
https://doc.rust-lang.org/stable/rust-by-example/fn/methods.html
https://doc.rust-lang.org/stable/reference/items/associated-items.html#methods
https://doc.rust-lang.org/stable/reference/items/associated-items.html#methods
https://rust-lang.github.io/rfcs/1506-adt-kinds.html#tuple-structs
https://rust-lang.github.io/rfcs/1506-adt-kinds.html#tuple-structs
https://doc.rust-lang.org/stable/reference/items/functions.html#async-functions
https://doc.rust-lang.org/stable/reference/items/functions.html#async-functions
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html#function-pointers
https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html#function-pointers
https://doc.rust-lang.org/std/primitive.fn.html
https://doc.rust-lang.org/std/primitive.fn.html
https://doc.rust-lang.org/stable/reference/types.html#function-pointer-types
https://doc.rust-lang.org/stable/reference/types.html#function-pointer-types
https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html#returning-closures
https://doc.rust-lang.org/book/ch19-05-advanced-functions-and-closures.html#returning-closures
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/book/ch13-01-closures.html
https://doc.rust-lang.org/book/ch13-01-closures.html
https://doc.rust-lang.org/stable/rust-by-example/fn/closures.html
https://doc.rust-lang.org/stable/rust-by-example/fn/closures.html
https://doc.rust-lang.org/stable/reference/expressions/closure-expr.html
https://doc.rust-lang.org/stable/reference/expressions/closure-expr.html
https://doc.rust-lang.org/stable/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/stable/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/stable/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/stable/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#unsafe-superpowers
https://doc.rust-lang.org/stable/rust-by-example/unsafe.html#unsafe-operations
https://doc.rust-lang.org/stable/rust-by-example/unsafe.html#unsafe-operations
https://doc.rust-lang.org/nightly/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/nightly/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/stable/reference/unsafe-blocks.html#unsafe-blocks
https://doc.rust-lang.org/stable/reference/unsafe-blocks.html#unsafe-blocks
https://users.rust-lang.org/t/why-are-function-pointers-special-no-null/87990/16
https://users.rust-lang.org/t/why-are-function-pointers-special-no-null/87990/16
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#predicate-loops
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#predicate-loops
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#infinite-loops
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#infinite-loops
https://doc.rust-lang.org/book/ch13-02-iterators.html
https://doc.rust-lang.org/book/ch13-02-iterators.html
https://doc.rust-lang.org/std/iter/index.html
https://doc.rust-lang.org/std/iter/index.html
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#iterator-loops
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#iterator-loops
https://doc.rust-lang.org/stable/reference/expressions/if-expr.html
https://doc.rust-lang.org/stable/reference/expressions/if-expr.html
https://rust-lang.github.io/rfcs/2046-label-break-value.html
https://rust-lang.github.io/rfcs/2046-label-break-value.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/loop/nested.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/loop/nested.html
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#loop-labels
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#loop-labels
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#break-expressions
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#break-expressions
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#continue-expressions
https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html#continue-expressions
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html

4

Example Explanation

continue 'label Same but instead of this loop, enclosing loop marked with 'label.

x? If x is Err or None, return and propagate.

x.await Syntactic sugar to get future, poll, yield. Only inside async .

return x Early return from fn. More idiomatic is to end with expression.

 { return } Inside normal {} -blocks return exits surrounding function.

 �� { return } Within closures return exits that c. only, i.e., closure is s. fn.

 async { return } Inside async a return only exits that {} , i.e., async {} is s. fn.

f() Invoke callable f (e.g., a function, closure, function pointer, Fn , …).

x.f() Call member fn, requires f takes self , &self , … as first argument.

 X��f(x) Same as x.f() . Unless impl Copy for X {} , f can only be called once.

 X��f(&x) Same as x.f() .

 X��f(&mut x) Same as x.f() .

 S��f(&x) Same as x.f() if X derefs to S , i.e., x.f() finds methods of S .

 T��f(&x) Same as x.f() if X impl T , i.e., x.f() finds methods of T if in scope.

X��f() Call associated function, e.g., X��new() .

 <X as T>::f() Call trait method T��f() implemented for X .

Organizing Code

Segment projects into smaller units and minimize dependencies.

Example Explanation

mod {} Define a module, get definition from inside {} .

mod ; Define a module, get definition from m.rs or m/mod.rs .

b Namespace path to element b within a (mod , enum , …).

 ��b Search b in crate root or ext. prelude; global path.

 crate Search b in crate root.

 self Search b in current module.

 super Search b in parent module.

use b; Use b directly in this scope without requiring a anymore.

use {b, c}; Same, but bring b and c into scope.

use b as x; Bring b into scope but name x , like use Error as E .

use b as _; Bring b anon. into scope, useful for traits with conflicting names.

use *; Bring everything from a in, only recomm. if a is some prelude.

pub use b; Bring b into scope and reexport from here.

pub T "Public if parent path is public" visibility for T .

 pub(crate) T Visible at most in current crate.

 pub(super) T Visible at most in parent.

 pub(self) T Visible at most in current module (default, same as no pub).

 pub(in b) T Visible at most in ancestor b .

extern crate ; Declare dependency on external crate; just use b in .

extern "C" {} Declare external dependencies and ABI (e.g., "C") from FFI.

extern "C" fn f() {} Define function to be exported with ABI (e.g., "C") to FFI.

 Items in child modules always have access to any item, regardless if pub or not.

BK EX STD REF

REF '18

 x.into_future()↪ Effectively converts any IntoFuture type into proper future first.STD

 future.poll()↪ On proper Future then poll() and yield flow if Poll��Pending . STD STD

REF

REF 🛑

m BK EX REF ↓

m ↓

a�� EX REF

'15 REF '18 REF REF 🗑

��b '18

��b

��b

a�� EX REF

a��

a�� std��error��

a��

a�� STD 🔗

a�� a��

BK REF

1

1

1

a�� 1 a��

a BK REF 🗑 a�� '18

BK EX NOM REF

1

https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err
https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#propagating-errors
https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#propagating-errors
https://doc.rust-lang.org/stable/rust-by-example/error/result/enter_question_mark.html
https://doc.rust-lang.org/stable/rust-by-example/error/result/enter_question_mark.html
https://doc.rust-lang.org/std/result/index.html#the-question-mark-operator-
https://doc.rust-lang.org/std/result/index.html#the-question-mark-operator-
https://doc.rust-lang.org/stable/reference/expressions/operator-expr.html#the-question-mark-operator
https://doc.rust-lang.org/stable/reference/expressions/operator-expr.html#the-question-mark-operator
https://doc.rust-lang.org/stable/reference/expressions/await-expr.html#await-expressions
https://doc.rust-lang.org/stable/reference/expressions/await-expr.html#await-expressions
https://doc.rust-lang.org/stable/reference/expressions/return-expr.html
https://doc.rust-lang.org/stable/reference/expressions/return-expr.html
https://doc.rust-lang.org/stable/reference/expressions/block-expr.html#control-flow-operators
https://doc.rust-lang.org/stable/reference/expressions/block-expr.html#control-flow-operators
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/stable/rust-by-example/mod.html#modules
https://doc.rust-lang.org/stable/rust-by-example/mod.html#modules
https://doc.rust-lang.org/stable/reference/items/modules.html#modules
https://doc.rust-lang.org/stable/reference/items/modules.html#modules
https://doc.rust-lang.org/stable/rust-by-example/mod/use.html
https://doc.rust-lang.org/stable/rust-by-example/mod/use.html
https://doc.rust-lang.org/stable/reference/paths.html
https://doc.rust-lang.org/stable/reference/paths.html
https://doc.rust-lang.org/stable/reference/glossary.html#crate
https://doc.rust-lang.org/stable/reference/glossary.html#crate
https://doc.rust-lang.org/stable/reference/names/preludes.html#extern-prelude
https://doc.rust-lang.org/stable/reference/names/preludes.html#extern-prelude
https://doc.rust-lang.org/stable/reference/paths.html#path-qualifiers
https://doc.rust-lang.org/stable/reference/paths.html#path-qualifiers
https://doc.rust-lang.org/stable/rust-by-example/mod/use.html#the-use-declaration
https://doc.rust-lang.org/stable/rust-by-example/mod/use.html#the-use-declaration
https://doc.rust-lang.org/stable/reference/items/use-declarations.html
https://doc.rust-lang.org/stable/reference/items/use-declarations.html
https://doc.rust-lang.org/std/prelude/index.html#other-preludes
https://doc.rust-lang.org/std/prelude/index.html#other-preludes
https://stackoverflow.com/questions/36384840/what-is-the-prelude
https://stackoverflow.com/questions/36384840/what-is-the-prelude
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/stable/reference/visibility-and-privacy.html
https://doc.rust-lang.org/stable/reference/visibility-and-privacy.html
https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#using-a-crate-to-get-more-functionality
https://doc.rust-lang.org/book/ch02-00-guessing-game-tutorial.html#using-a-crate-to-get-more-functionality
https://doc.rust-lang.org/stable/reference/items/extern-crates.html#extern-crate-declarations
https://doc.rust-lang.org/stable/reference/items/extern-crates.html#extern-crate-declarations
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code
https://doc.rust-lang.org/stable/rust-by-example/std_misc/ffi.html#foreign-function-interface
https://doc.rust-lang.org/stable/rust-by-example/std_misc/ffi.html#foreign-function-interface
https://doc.rust-lang.org/nightly/nomicon/ffi.html#calling-foreign-functions
https://doc.rust-lang.org/nightly/nomicon/ffi.html#calling-foreign-functions
https://doc.rust-lang.org/stable/reference/items/external-blocks.html#external-blocks
https://doc.rust-lang.org/stable/reference/items/external-blocks.html#external-blocks
https://doc.rust-lang.org/std/future/trait.IntoFuture.html
https://doc.rust-lang.org/std/future/trait.IntoFuture.html
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/task/enum.Poll.html
https://doc.rust-lang.org/std/task/enum.Poll.html

5

Type Aliases and Casts

Short-hand names of types, and methods to convert one type to another.

Example Explanation

type T = S; Create a type alias, i.e., another name for S .

Self Type alias for implementing type, e.g., fn new() �� Self .

self Method subject in fn f(self) {} , e.g., akin to fn f(self: Self) {} .

 &self Same, but refers to self as borrowed, would equal f(self: &Self)

 &mut self Same, but mutably borrowed, would equal f(self: &mut Self)

 self: Box<Self> Arbitrary self type, add methods to smart ptrs (my_box.f_of_self()).

<S as T> Disambiguate type S as trait T , e.g., <S as T>::f() .

b as c In use of symbol, import S as R , e.g., use S as R .

x as u32 Primitive cast, may truncate and be a bit surprising.

 See Type Conversions below for all the ways to convert between types.

Macros & Attributes

Code generation constructs expanded before the actual compilation happens.

Example Explanation

m!() Macro invocation, also m!{} , m![] (depending on macro).

��attr] Outer attribute, annotating the following item.

��[attr] Inner attribute, annotating the upper, surrounding item.

Inside Macros Explanation

$x:ty Macro capture, the :… fragment declares what is allowed for $x .

$x Macro substitution, e.g., use the captured $x:ty from above.

$(x),* Macro repetition zero or more times.

 $(x),+ Same, but one or more times.

 $(x)? Same, but zero or one time (separator doesn't apply).

 $(x)<<+ In fact separators other than , are also accepted. Here: �� .

 Applies to 'macros by example'.
 See Tooling Directives below for all captures.

Pattern Matching

Constructs found in match or let expressions, or function parameters.

Example Explanation

match m {} Initiate pattern matching, then use match arms, c. next table.

let S(x) = get(); Notably, let also destructures similar to the table below.

 let S { x } = s; Only x will be bound to value s.x .

 let (_, b, _) = abc; Only b will be bound to value abc.1 .

 let (a, ��) = abc; Ignoring 'the rest' also works.

 let (��, a, b) = (1, 2); Specific bindings take precedence over 'the rest', here a is 1 , b is 2 .

 let s @ S { x } = get(); Bind s to S while x is bnd. to s.x , pattern binding, c. below

 let w @ t @ f = get(); Stores 3 copies of get() result in each w , t , f .

 let (|x| x) = get(); Pathological or-pattern, not closure. Same as let x = get();

let Some(x) = get(); Won't work if p. can be refuted, use let else or if let instead.

let Some(x) = get() else {}; Try to assign if not else {} w. must break , return , panic! , …

if let Some(x) = get() {} Branch if pattern can be assigned (e.g., enum variant), syntactic sugar.

while let Some(x) = get() {} Equiv.; here keep calling get() , run {} as long as p. can be assigned.

BK REF

REF

BK REF

a�� a��

EX REF 1 NOM

1

BK STD REF

EX REF

1

REF 2

REF

1 REF

2

BK EX REF

EX

BK EX REF 🝖

🝖

↓ 🛑 🝖

🛑 REF

RFC 1.65+ 🔥

*

https://doc.rust-lang.org/book/ch19-04-advanced-types.html#creating-type-synonyms-with-type-aliases
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#creating-type-synonyms-with-type-aliases
https://doc.rust-lang.org/stable/reference/items/type-aliases.html#type-aliases
https://doc.rust-lang.org/stable/reference/items/type-aliases.html#type-aliases
https://doc.rust-lang.org/stable/reference/types.html#self-types
https://doc.rust-lang.org/stable/reference/types.html#self-types
https://github.com/withoutboats/rfcs/blob/arbitray-receivers/text/0000-century-of-the-self-type.md
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
https://doc.rust-lang.org/stable/reference/expressions/call-expr.html#disambiguating-function-calls
https://doc.rust-lang.org/stable/reference/expressions/call-expr.html#disambiguating-function-calls
https://doc.rust-lang.org/stable/rust-by-example/types/cast.html#casting
https://doc.rust-lang.org/stable/rust-by-example/types/cast.html#casting
https://doc.rust-lang.org/stable/reference/expressions/operator-expr.html#type-cast-expressions
https://doc.rust-lang.org/stable/reference/expressions/operator-expr.html#type-cast-expressions
https://doc.rust-lang.org/nightly/nomicon/casts.html
https://doc.rust-lang.org/nightly/nomicon/casts.html
https://cheats.rs/#type-conversions
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/std/index.html#macros
https://doc.rust-lang.org/std/index.html#macros
https://doc.rust-lang.org/stable/reference/macros.html
https://doc.rust-lang.org/stable/reference/macros.html
https://doc.rust-lang.org/stable/rust-by-example/attribute.html
https://doc.rust-lang.org/stable/rust-by-example/attribute.html
https://doc.rust-lang.org/stable/reference/attributes.html
https://doc.rust-lang.org/stable/reference/attributes.html
https://doc.rust-lang.org/stable/reference/macros-by-example.html#metavariables
https://doc.rust-lang.org/stable/reference/macros-by-example.html#metavariables
https://doc.rust-lang.org/stable/reference/macros-by-example.html#repetitions
https://doc.rust-lang.org/stable/reference/macros-by-example.html#repetitions
https://doc.rust-lang.org/stable/reference/macros-by-example.html
https://doc.rust-lang.org/stable/reference/macros-by-example.html
https://cheats.rs/#tooling-directives
https://doc.rust-lang.org/book/ch06-02-match.html
https://doc.rust-lang.org/book/ch06-02-match.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match.html
https://doc.rust-lang.org/stable/reference/expressions/match-expr.html
https://doc.rust-lang.org/stable/reference/expressions/match-expr.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/destructuring.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/destructuring.html
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#-bindings
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#-bindings
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/binding.html#binding
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/binding.html#binding
https://doc.rust-lang.org/stable/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/stable/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/stable/reference/expressions/if-expr.html#if-let-expressions
https://doc.rust-lang.org/stable/reference/expressions/if-expr.html#if-let-expressions
https://rust-lang.github.io/rfcs/3137-let-else.html
https://rust-lang.github.io/rfcs/3137-let-else.html

6

Example Explanation

fn f(S { x }� S) Function param. also work like let , here x bound to s.x of f(s) .

 Desugars to match get() { Some(x) �� {}, _ �� () }.

Pattern matching arms in match expressions. Left side of these arms can also be found in let expressions.

Within Match Arm Explanation

E��A �� {} Match enum variant A , c. pattern matching.

E��B (��) �� {} Match enum tuple variant B , ignoring any index.

E��C { �� } �� {} Match enum struct variant C , ignoring any field.

S { x: 0, y: 1 } �� {} Match s. with specific values (only s with s.x of 0 and s.y of 1).

S { x: a, y: b } �� {} Match s. with any values and bind s.x to a and s.y to b .

 S { x, y } �� {} Same, but shorthand with s.x and s.y bound as x and y respectively.

S { �� } �� {} Match struct with any values.

D �� {} Match enum variant E��D if D in use .

D �� {} Match anything, bind D ; possibly false friend of E��D if D not in use .

_ �� {} Proper wildcard that matches anything / "all the rest".

0 | 1 �� {} Pattern alternatives, or-patterns.

 E��A | E��Z �� {} Same, but on enum variants.

 E��C {x} | E��D {x} �� {} Same, but bind x if all variants have it.

 Some(A | B) �� {} Same, can also match alternatives deeply nested.

 |x| x �� {} Pathological or-pattern, leading | ignored, is just x | x , thus x .

(a, 0) �� {} Match tuple with any value for a and 0 for second.

[a, 0] �� {} Slice pattern, match array with any value for a and 0 for second.

 [1, ��] �� {} Match array starting with 1 , any value for rest; subslice pattern.

 [1, ��, 5] �� {} Match array starting with 1 , ending with 5 .

 [1, x @ ��, 5] �� {} Same, but also bind x to slice representing middle (c. pattern binding).

 [a, x @ ��, b] �� {} Same, but match any first, last, bound as a , b respectively.

1 �� 3 �� {} Range pattern, here matches 1 and 2 ; partially unstable.

 1 ��� 3 �� {} Inclusive range pattern, matches 1 , 2 and 3 .

 1 �� �� {} Open range pattern, matches 1 and any larger number.

x @ 1���5 �� {} Bind matched to x ; pattern binding, here x would be 1 … 5 .

 Err(x @ Error {��}) �� {} Also works nested, here x binds to Error , esp. useful with if below.

S { x } if x > 10 �� {} Pattern match guards, condition must be true as well to match.

Generics & Constraints

Generics combine with type constructors, traits and functions to give your users more flexibility.

Example Explanation

struct S<T> … A generic type with a type parameter (T is placeholder here).

S<T> where T� R Trait bound, limits allowed T , guarantees T has trait R .

 where T� R, P� S Independent trait bounds, here one for T and one for (not shown) P .

 where T� R, S Compile error, you probably want compound bound R + S below.

 where T� R + S Compound trait bound, T must fulfill R and S .

 where T� R + 'a Same, but w. lifetime. T must fulfill R , if T has lt., must outlive 'a .

 where T� ?Sized Opt out of a pre-defined trait bound, here Sized .

 where T� 'a Type lifetime bound; if T has references, they must outlive 'a .

 where T� 'static Same; does not mean value t will live 'static , only that it could.

🝖

*

BK EX REF

🛑

🛑

RFC

↑🛑 🝖

REF 🔗

REF RFC

BK REF 🚧

BK EX REF

BK EX REF

BK EX

BK EX REF

🛑

BK EX

?

EX

🛑

https://doc.rust-lang.org/book/ch06-02-match.html
https://doc.rust-lang.org/book/ch06-02-match.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match.html
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match.html
https://doc.rust-lang.org/stable/reference/expressions/match-expr.html
https://doc.rust-lang.org/stable/reference/expressions/match-expr.html
https://rust-lang.github.io/rfcs/2535-or-patterns.html
https://rust-lang.github.io/rfcs/2535-or-patterns.html
https://doc.rust-lang.org/stable/reference/patterns.html#slice-patterns
https://doc.rust-lang.org/stable/reference/patterns.html#slice-patterns
https://doc.rust-lang.org/edition-guide/rust-2018/slice-patterns.html
https://doc.rust-lang.org/edition-guide/rust-2018/slice-patterns.html
https://doc.rust-lang.org/stable/reference/patterns.html#rest-patterns
https://doc.rust-lang.org/stable/reference/patterns.html#rest-patterns
https://rust-lang.github.io/rfcs/2359-subslice-pattern-syntax.html
https://rust-lang.github.io/rfcs/2359-subslice-pattern-syntax.html
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#matching-ranges-of-values-with-
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#matching-ranges-of-values-with-
https://doc.rust-lang.org/stable/reference/patterns.html#range-patterns
https://doc.rust-lang.org/stable/reference/patterns.html#range-patterns
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#-bindings
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#-bindings
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/binding.html#binding
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/binding.html#binding
https://doc.rust-lang.org/stable/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/stable/reference/patterns.html#identifier-patterns
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#extra-conditionals-with-match-guards
https://doc.rust-lang.org/book/ch18-03-pattern-syntax.html#extra-conditionals-with-match-guards
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/guard.html#guards
https://doc.rust-lang.org/stable/rust-by-example/flow_control/match/guard.html#guards
https://doc.rust-lang.org/stable/reference/expressions/match-expr.html#match-guards
https://doc.rust-lang.org/stable/reference/expressions/match-expr.html#match-guards
https://doc.rust-lang.org/book/ch10-01-syntax.html
https://doc.rust-lang.org/book/ch10-01-syntax.html
https://doc.rust-lang.org/stable/rust-by-example/generics.html
https://doc.rust-lang.org/stable/rust-by-example/generics.html
https://doc.rust-lang.org/book/ch10-02-traits.html#using-trait-bounds-to-conditionally-implement-methods
https://doc.rust-lang.org/book/ch10-02-traits.html#using-trait-bounds-to-conditionally-implement-methods
https://doc.rust-lang.org/stable/rust-by-example/generics/bounds.html
https://doc.rust-lang.org/stable/rust-by-example/generics/bounds.html
https://doc.rust-lang.org/stable/reference/trait-bounds.html#trait-and-lifetime-bounds
https://doc.rust-lang.org/stable/reference/trait-bounds.html#trait-and-lifetime-bounds
https://doc.rust-lang.org/book/ch10-02-traits.html#specifying-multiple-trait-bounds-with-the--syntax
https://doc.rust-lang.org/book/ch10-02-traits.html#specifying-multiple-trait-bounds-with-the--syntax
https://doc.rust-lang.org/stable/rust-by-example/generics/multi_bounds.html
https://doc.rust-lang.org/stable/rust-by-example/generics/multi_bounds.html
https://doc.rust-lang.org/stable/rust-by-example/scope/lifetime/lifetime_bounds.html
https://doc.rust-lang.org/stable/rust-by-example/scope/lifetime/lifetime_bounds.html

7

Example Explanation

 where 'b: 'a Lifetime 'b must live at least as long as (i.e., outlive) 'a bound.

 where u8� R<T> Can also make conditional statements involving other types.

S<T� R> Short hand bound, almost same as above, shorter to write.

S<const N� usize> Generic const bound; user of type S can provide constant value N .

 S<10> Where used, const bounds can be provided as primitive values.

 S<{5+5}> Expressions must be put in curly brackets.

S<T = R> Default parameters; makes S a bit easier to use, but keeps flexible.

 S<const N� u8 = 0> Default parameter for constants; e.g., in f(x: S) {} param N is 0 .

 S<T = u8> Default parameter for types, e.g., in f(x: S) {} param T is u8 .

S<'_> Inferred anonymous lt.; asks compiler to 'figure it out' if obvious.

S<_> Inferred anonymous type, e.g., as let x: Vec<_> = iter.collect()

S�:<T> Turbofish call site type disambiguation, e.g., f::<u32>() .

trait T<X> {} A trait generic over X . Can have multiple impl T for S (one per X).

trait T { type X; } Defines associated type X . Only one impl T for S possible.

trait T { type X<G>; } Defines generic associated type (GAT), X can be generic Vec�� .

trait T { type X<'a>; } Defines a GAT generic over a lifetime.

 type X = R; Set associated type within impl T for S { type X = R; } .

 type X<G> = R<G>; Same for GAT, e.g., impl T for S { type X<G> = Vec<G>; } .

impl<T> S<T> {} Impl. fn 's for any T in S<T> generically, here T ty. parameter.

impl S<T> {} Impl. fn 's for exactly S<T> inherently, here T specific type, e.g., u8 .

fn f() �� impl T Existential types, returns an unknown-to-caller S that impl T .

fn f(x: &impl T) Trait bound via "impl traits", similar to fn f<S� T>(x: &S) below.

fn f(x: &dyn T) Invoke f via dynamic dispatch, f will not be instantiated for x .

fn f<X� T>(x: X) Fn. generic over X , f will be instantiated ('monomorphized') per X .

fn f() where Self: R; In trait T {} , make f accessible only on types known to also impl R .

 fn f() where Self: Sized; Using Sized can opt f out of trait object vtable, enabling dyn T .

 fn f() where Self: R {} Other R useful w. dflt. fn. (non dflt. would need be impl'ed anyway).

Higher-Ranked Items

Actual types and traits, abstract over something, usually lifetimes.

Example Explanation

for<'a> Marker for higher-ranked bounds.

 trait T� for<'a> R<'a> {} Any S that impl T would also have to fulfill R for any lifetime.

fn(&'a u8) Function pointer type holding fn callable with specific lifetime 'a .

for<'a> fn(&'a u8) Higher-ranked type holding fn call. with any lt.; subtype of above.

 fn(&'_ u8) Same; automatically expanded to type for<'a> fn(&'a u8) .

 fn(&u8) Same; automatically expanded to type for<'a> fn(&'a u8) .

dyn for<'a> Fn(&'a u8) Higher-ranked (trait-object) type, works like fn above.

 dyn Fn(&'_ u8) Same; automatically expanded to type dyn for<'a> Fn(&'a u8) .

 dyn Fn(&u8) Same; automatically expanded to type dyn for<'a> Fn(&'a u8) .

 Yes, the for�� is part of the type, which is why you write impl T for for<'a> fn(&'a u8) below.

Implementing Traits Explanation

impl<'a> T for fn(&'a u8) {} For fn. pointer, where call accepts specific lt. 'a , impl trait T .

impl T for for<'a> fn(&'a u8) {} For fn. pointer, where call accepts any lt., impl trait T .

🝖

REF

BK

STD

BK REF RFC

RFC

REF

REF

BK

BK

BK REF

🝖

NOM REF🝖

1 🔗 ↓

1

https://doc.rust-lang.org/stable/reference/items/generics.html#const-generics
https://doc.rust-lang.org/stable/reference/items/generics.html#const-generics
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#default-generic-type-parameters-and-operator-overloading
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#default-generic-type-parameters-and-operator-overloading
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#specifying-placeholder-types-in-trait-definitions-with-associated-types
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#specifying-placeholder-types-in-trait-definitions-with-associated-types
https://doc.rust-lang.org/stable/reference/items/associated-items.html#associated-types
https://doc.rust-lang.org/stable/reference/items/associated-items.html#associated-types
https://rust-lang.github.io/rfcs/0195-associated-items.html
https://rust-lang.github.io/rfcs/0195-associated-items.html
https://rust-lang.github.io/rfcs/1598-generic_associated_types.html
https://rust-lang.github.io/rfcs/1598-generic_associated_types.html
https://doc.rust-lang.org/stable/reference/items/implementations.html#generic-implementations
https://doc.rust-lang.org/stable/reference/items/implementations.html#generic-implementations
https://doc.rust-lang.org/stable/reference/items/implementations.html#inherent-implementations
https://doc.rust-lang.org/stable/reference/items/implementations.html#inherent-implementations
https://doc.rust-lang.org/book/ch10-02-traits.html#returning-types-that-implement-traits
https://doc.rust-lang.org/book/ch10-02-traits.html#returning-types-that-implement-traits
https://doc.rust-lang.org/book/ch10-02-traits.html#trait-bound-syntax
https://doc.rust-lang.org/book/ch10-02-traits.html#trait-bound-syntax
https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types
https://doc.rust-lang.org/book/ch17-02-trait-objects.html#using-trait-objects-that-allow-for-values-of-different-types
https://doc.rust-lang.org/stable/reference/types.html#trait-objects
https://doc.rust-lang.org/stable/reference/types.html#trait-objects
https://en.wikipedia.org/wiki/Monomorphization
https://doc.rust-lang.org/nightly/nomicon/hrtb.html
https://doc.rust-lang.org/nightly/nomicon/hrtb.html
https://doc.rust-lang.org/stable/reference/trait-bounds.html#higher-ranked-trait-bounds
https://doc.rust-lang.org/stable/reference/trait-bounds.html#higher-ranked-trait-bounds
https://github.com/rust-lang/rust/issues/56105
https://github.com/rust-lang/rust/issues/56105

8

Implementing Traits Explanation

 impl T for fn(&u8) {} Same, short version.

Strings & Chars

Rust has several ways to create textual values.

Example Explanation

"���" String literal, a UTF-8 &'static str , supporting these escapes:

 "\n\r\t\0\\" Common escapes , e.g., "\n" becomes new line.

 "\x36" ASCII e. up to 7f , e.g., "\x36" would become 6 .

 "\u{7fff}" Unicode e. up to 6 digits, e.g., "\u{7fff}" becomes 翿.

r"���" Raw string literal. UTF-8, but won't interpret any escape above.

r#"���"# Raw string literal, UTF-8, but can also contain " . Number of # can vary.

b"���" Byte string literal; constructs ASCII-only &'static [u8; N] .

br"���" , br#"���"# Raw byte string literal, combination analog to above.

'🦀' Character literal, fixed 4 byte unicode 'char'.

b'x' ASCII byte literal, a single u8 byte.

c"���" C string literal, constructs NUL-terminated &CStr , for FFI interop.

 Supports multiple lines out of the box. Just keep in mind Debug (e.g., dbg!(x) and println!("{x:?}")) might render them as \n, while Display (e.g., println!("{x}")) renders them
proper.

Documentation

Debuggers hate him. Avoid bugs with this one weird trick.

Example Explanation

��� Outer line doc comment, use these on ty., traits, fn's, …

��! Inner line doc comment, mostly used at top of file.

�� Line comment, use these to document code flow or internals.

�� … �� Block comment.

/** … �� Outer block doc comment.

��! … �� Inner block doc comment.

 Tooling Directives outline what you can do inside doc comments.
 Generally discouraged due to bad UX. If possible use equivalent line comment instead with IDE support.

Miscellaneous

These sigils did not fit any other category but are good to know nonetheless.

Example Explanation

! Always empty never type.

 fn f() �� ! {} Function that never ret.; compat. with any ty. e.g., let x: u8 = f();

 fn f() �� Result<(), !> {} Function that must return Result but signals it can never Err .

 fn f(x: !) {} Function that exists, but can never be called. Not very useful.

_ Unnamed wildcard variable binding, e.g., |x, _| {} .

 let _ = x; Unnamed assign. is no-op, does not move out x or preserve scope!

 _ = x; You can assign anything to _ without let , i.e., _ = ignore_rval();

_x Variable binding that won't emit unused variable warnings.

1_234_567 Numeric separator for visual clarity.

1_u8 Type specifier for numeric literals (also i8 , u16 , …).

0�BEEF , 0o777 , 0b1001 Hexadecimal (0x), octal (0o) and binary (0b) integer literals.

REF, 1 STD

REF

REF

REF

REF, 1

REF, 1

REF STD

REF

? STD 1.77+

1 ↓ ↓

1 BK EX REF

2 🗑

2 🗑

2 🗑

1

2

BK EX STD REF

🚧

🝖 🚧

REF

🛑

🔥

EX REF

https://doc.rust-lang.org/stable/reference/tokens.html#string-literals
https://doc.rust-lang.org/stable/reference/tokens.html#string-literals
https://doc.rust-lang.org/std/primitive.str.html
https://doc.rust-lang.org/std/primitive.str.html
https://doc.rust-lang.org/stable/reference/tokens.html#ascii-escapes
https://doc.rust-lang.org/stable/reference/tokens.html#ascii-escapes
https://doc.rust-lang.org/stable/reference/tokens.html#ascii-escapes
https://doc.rust-lang.org/stable/reference/tokens.html#ascii-escapes
https://doc.rust-lang.org/stable/reference/tokens.html#unicode-escapes
https://doc.rust-lang.org/stable/reference/tokens.html#unicode-escapes
https://doc.rust-lang.org/stable/reference/tokens.html#raw-string-literals
https://doc.rust-lang.org/stable/reference/tokens.html#raw-string-literals
https://doc.rust-lang.org/stable/reference/tokens.html#byte-and-byte-string-literals
https://doc.rust-lang.org/stable/reference/tokens.html#byte-and-byte-string-literals
https://doc.rust-lang.org/stable/reference/tokens.html#character-and-string-literals
https://doc.rust-lang.org/stable/reference/tokens.html#character-and-string-literals
https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/std/primitive.char.html
https://doc.rust-lang.org/stable/reference/tokens.html#byte-literals
https://doc.rust-lang.org/stable/reference/tokens.html#byte-literals
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
https://doc.rust-lang.org/stable/rust-by-example/meta/doc.html#documentation
https://doc.rust-lang.org/stable/rust-by-example/meta/doc.html#documentation
https://doc.rust-lang.org/stable/reference/comments.html#doc-comments
https://doc.rust-lang.org/stable/reference/comments.html#doc-comments
https://cheats.rs/#tooling-directives
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#the-never-type-that-never-returns
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#the-never-type-that-never-returns
https://doc.rust-lang.org/stable/rust-by-example/fn/diverging.html#diverging-functions
https://doc.rust-lang.org/stable/rust-by-example/fn/diverging.html#diverging-functions
https://doc.rust-lang.org/std/primitive.never.html
https://doc.rust-lang.org/std/primitive.never.html
https://doc.rust-lang.org/stable/reference/types.html#never-type
https://doc.rust-lang.org/stable/reference/types.html#never-type
https://doc.rust-lang.org/stable/reference/patterns.html#wildcard-pattern
https://doc.rust-lang.org/stable/reference/patterns.html#wildcard-pattern
https://doc.rust-lang.org/stable/rust-by-example/types/literals.html#literals
https://doc.rust-lang.org/stable/rust-by-example/types/literals.html#literals
https://doc.rust-lang.org/stable/reference/tokens.html#number-literals
https://doc.rust-lang.org/stable/reference/tokens.html#number-literals

9

Example Explanation

r#foo A raw identifier for edition compatibility.

x; Statement terminator, c. expressions

Common Operators

Rust supports most operators you would expect (+ , * , % , = , �� , …), including overloading. Since they behave no differently in Rust we do not
list them here.

Behind the Scenes
Arcane knowledge that may do terrible things to your mind, highly recommended.

The Abstract Machine

Like C and C�� , Rust is based on an abstract machine.

BK EX 🝖

REF EX REF

STD

Overview

With rare exceptions you are never 'allowed to reason' about the actual CPU. You write code for an abstracted
CPU. Rust then (sort of) understands what you want, and translates that into actual RISC-V / x86 / … machine
code.

This abstract machine

is not a runtime, and does not have any runtime overhead, but is a computing model abstraction,
contains concepts such as memory regions (stack, …), execution semantics, …
knows and sees things your CPU might not care about,
is de-facto a contract between you and the compiler,
and exploits all of the above for optimizations.

Rust → CPU

 Misleading.🛑

Rust → Abstract Machine → CPU

Correct.

Misconceptions

On the left things people may incorrectly assume they should get away with if Rust targeted CPU directly. On the
right things you'd interfere with if in reality if you violate the AM contract.

Without AM With AM

0�ffff_ffff would make a valid char . AM may exploit 'invalid' bit patterns to pack unrelated data.

0�ff and 0�ff are same pointer. AM pointers can have 'domain' attached for optimization.

Any r/w on pointer 0�ff always fine. AM may issue cache-friendly ops since 'no read possible'.

Reading un-init just gives random value. AM 'knows' read impossible, may remove all related code.

Data race just gives random value. AM may split R/W, produce impossible value, see above.

🛑

🛑

🛑

🛑

🛑

https://doc.rust-lang.org/book/appendix-01-keywords.html#raw-identifiers
https://doc.rust-lang.org/book/appendix-01-keywords.html#raw-identifiers
https://doc.rust-lang.org/stable/rust-by-example/compatibility/raw_identifiers.html#raw-identifiers
https://doc.rust-lang.org/stable/rust-by-example/compatibility/raw_identifiers.html#raw-identifiers
https://doc.rust-lang.org/stable/reference/statements.html
https://doc.rust-lang.org/stable/reference/statements.html
https://doc.rust-lang.org/stable/rust-by-example/expression.html
https://doc.rust-lang.org/stable/rust-by-example/expression.html
https://doc.rust-lang.org/stable/reference/expressions.html
https://doc.rust-lang.org/stable/reference/expressions.html
https://doc.rust-lang.org/std/ops/index.html
https://doc.rust-lang.org/std/ops/index.html

10

Language Sugar

If something works that "shouldn't work now that you think about it", it might be due to one of these.

Name Description

Coercions Weakens types to match signature, e.g., &mut T to &T ; c. type conv.

Deref Derefs x: T until �x , ��x , … compatible with some target S .

Prelude Automatic import of basic items, e.g., Option , drop() , …

Reborrow Since x: &mut T can't be copied; moves new &mut �x instead.

Lifetime Elision Allows you to write f(x: &T) , instead of f<'a>(x: &'a T) , for brevity.

Lifetime Extensions In let x = &tmp().f and similar hold on to temporary past line.

Method Resolution Derefs or borrow x until x.f() works.

Match Ergonomics Repeatedly deref. scrutinee and adds ref and ref mut to bindings.

Rvalue Static Promotion Makes refs. to constants 'static , e.g., &42 , &None , &mut [] .

Dual Definitions Defining one (e.g., struct S(u8)) implicitly def. another (e.g., fn S).

Opinion — These features make your life easier using Rust, but stand in the way of learning it. If you want to develop a genuine
understanding, spend some extra time exploring them.

Memory & Lifetimes

An illustrated guide to moves, references and lifetimes.

Without AM With AM

Null ref. is just 0�0 in some register. Holding 0�0 in reference summons Cthulhu.

This table is only to outline what the AM does. Unlike C or C++, Rust never lets you do the wrong thing unless
you force it with unsafe .

🛑

↓

NOM ↓

NOM 🔗

STD

🔗

BK NOM REF

🔗 REF

REF

RFC

RFC🝖

RFC🝖

💬

Types & Moves

Application memory is just array of bytes on low level.
Operating environment usually segments that, amongst others, into:

stack (small, low-overhead memory, most variables go here),
heap (large, flexible memory, but always handled via stack proxy like Box<T>),
static (most commonly used as resting place for str part of &str),
code (where bitcode of your functions reside).

Most tricky part is tied to how stack evolves, which is our focus.

 For fixed-size values stack is trivially manageable: take a few bytes more while you need them, discarded once you leave. However, giving
out pointers to these transient locations form the very essence of why lifetimes exist; and are the subject of the rest of this chapter.

 Application Memory ↕

1

1

https://doc.rust-lang.org/nightly/nomicon/coercions.html
https://doc.rust-lang.org/nightly/nomicon/coercions.html
https://doc.rust-lang.org/nightly/nomicon/vec-deref.html
https://doc.rust-lang.org/nightly/nomicon/vec-deref.html
https://stackoverflow.com/questions/28519997/what-are-rusts-exact-auto-dereferencing-rules
https://stackoverflow.com/questions/28519997/what-are-rusts-exact-auto-dereferencing-rules
https://doc.rust-lang.org/std/ops/trait.Deref.html
https://doc.rust-lang.org/std/prelude/index.html
https://doc.rust-lang.org/std/prelude/index.html
https://quinedot.github.io/rust-learning/st-reborrow.html
https://quinedot.github.io/rust-learning/st-reborrow.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html#lifetime-elision
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html#lifetime-elision
https://doc.rust-lang.org/nightly/nomicon/lifetime-elision.html#lifetime-elision
https://doc.rust-lang.org/nightly/nomicon/lifetime-elision.html#lifetime-elision
https://doc.rust-lang.org/stable/reference/lifetime-elision.html#lifetime-elision
https://doc.rust-lang.org/stable/reference/lifetime-elision.html#lifetime-elision
https://blog.m-ou.se/super-let/
https://blog.m-ou.se/super-let/
https://doc.rust-lang.org/stable/reference/destructors.html#temporary-lifetime-extension
https://doc.rust-lang.org/stable/reference/destructors.html#temporary-lifetime-extension
https://doc.rust-lang.org/stable/reference/expressions/method-call-expr.html
https://doc.rust-lang.org/stable/reference/expressions/method-call-expr.html
https://rust-lang.github.io/rfcs/2005-match-ergonomics.html
https://rust-lang.github.io/rfcs/2005-match-ergonomics.html
https://doc.rust-lang.org/stable/reference/glossary.html#scrutinee
https://rust-lang.github.io/rfcs/1414-rvalue_static_promotion.html
https://rust-lang.github.io/rfcs/1414-rvalue_static_promotion.html
https://rust-lang.github.io/rfcs/1506-adt-kinds.html#tuple-structs
https://rust-lang.github.io/rfcs/1506-adt-kinds.html#tuple-structs

11

let t = S(1);

Reserves memory location with name t of type S and the value S(1) stored inside.
If declared with let that location lives on stack.
Note the linguistic ambiguity, in the term variable, it can mean the:

1. name of the location in the source file ("rename that variable"),
2. location in a compiled app, 0�7 ("tell me the address of that variable"),
3. value contained within, S(1) ("increment that variable").

Specifically towards the compiler t can mean location of t , here 0�7 , and value within t , here S(1) .

 Compare above, true for fully synchronous code, but async stack frame might placed it on heap via runtime.

let a = t;

This will move value within t to location of a , or copy it, if S is Copy .
After move location t is invalid and cannot be read anymore.

Technically the bits at that location are not really empty, but undefined.
If you still had access to t (via unsafe) they might still look like valid S , but any attempt to use them
as valid S is undefined behavior.

We do not cover Copy types explicitly here. They change the rules a bit, but not much:
They won't be dropped.
They never leave behind an 'empty' variable location.

let c: S = M��new();

The type of a variable serves multiple important purposes, it:
1. dictates how the underlying bits are to be interpreted,
2. allows only well-defined operations on these bits
3. prevents random other values or bits from being written to that location.

Here assignment fails to compile since the bytes of M��new() cannot be converted to form of type S .
Conversions between types will always fail in general, unless explicit rule allows it (coercion, cast,
…).

 S(1)

 t Variables ↕

1

1 ↑

S(1)

 a t Moves ↕

↓

M {
… }

⛔

 c Type Safety ↕

12

{
 let mut c = S(2);
 c = S(3); �� �� Drop called on `c` before assignment.
 let t = S(1);
 let a = t;
} �� �� Scope of `a`, `t`, `c` ends here, drop called on `a`, `c`.

Once the 'name' of a non-vacated variable goes out of (drop-)scope, the contained value is dropped.
Rule of thumb: execution reaches point where name of variable leaves {} -block it was defined in
In detail more tricky, esp. temporaries, …

Drop also invoked when new value assigned to existing variable location.
In that case Drop��drop() is called on the location of that value.

In the example above drop() is called on a , twice on c , but not on t .
Most non-Copy values get dropped most of the time; exceptions include forget() , Rc cycles,
abort() .

S(1)
▼

S(2)
▼

S(3)

 t Scope & Drop ↕

mem��

Call Stack

fn f(x: S) { … }

let a = S(1); �� �� We are here
f(a);

When a function is called, memory for parameters (and return values) are reserved on stack.
Here before f is invoked value in a is moved to 'agreed upon' location on stack, and during f works like
'local variable' x .

 Actual location depends on calling convention, might practically not end up on stack at all, but that doesn't change mental model.

fn f(x: S) {
 if once() { f(x) } �� �� We are here (before recursion)
}

let a = S(1);
f(a);

Recursively calling functions, or calling other functions, likewise extends the stack frame.

S(1)

 a x Function Boundaries ↕

1

1

S(1)

 a x x Nested Functions ↕

13

Nesting too many invocations (esp. via unbounded recursion) will cause stack to grow, and eventually to
overflow, terminating the app.

fn f(x: S) {
 if once() { f(x) }
 let m = M��new() �� �� We are here (after recursion)
}

let a = S(1);
f(a);

Stack that previously held a certain type will be repurposed across (even within) functions.
Here, recursing on f produced second x , which after recursion was partially reused for m .

Key take away so far, there are multiple ways how memory locations that previously held a valid value of a
certain type stopped doing so in the meantime. As we will see shortly, this has implications for pointers.

 S(1) M { }

 a x m Repurposing Memory ↕

References & Pointers

let a = S(1);
let r: &S = &a;

A reference type such as &S or &mut S can hold the location of some s .
Here type &S , bound as name r , holds location of variable a (0�3), that must be type S , obtained via &a .
If you think of variable c as specific location, reference r is a switchboard for locations.
The type of the reference, like all other types, can often be inferred, so we might omit it from now on:

let r: &S = &a;
let r = &a;

let mut a = S(1);
let r = &mut a;
let d = r.clone(); �� Valid to clone (or copy) from r�target.
�r = S(2); �� Valid to set new S value to r�target.

References can read from (&S) and also write to (&mut S) location they point to.

 ▼

 S(1) 0�3

 a r References as Pointers ↕

 ▼

 S(2) 0�3 S(1)

 a r d Access to Non-Owned Memory ↕

14

The dereference �r means to neither use the location of or value within r , but the location r points to.
In example above, clone d is created from �r , and S(2) written to �r .

Method Clone��clone(&T) expects a reference itself, which is why we can use r , not �r .
On assignment �r = … old value in location also dropped (not shown above).

let mut a = …;
let r = &mut a;
let d = �r; �� Invalid to move out value, `a` would be empty.
�r = M��new(); �� invalid to store non S value, doesn't make sense.

While bindings guarantee to always hold valid data, references guarantee to always point to valid data.
Esp. &mut T must provide same guarantees as variables, and some more as they can't dissolve the target:

They do not allow writing invalid data.
They do not allow moving out data (would leave target empty w/o owner knowing).

let p: �const S = questionable_origin();

In contrast to references, pointers come with almost no guarantees.
They may point to invalid or non-existent data.
Dereferencing them is unsafe , and treating an invalid �p as if it were valid is undefined behavior.

 ▼

 0�3

M { x }⛔

⛔

 a r d References Guard Referents ↕

 ▼

 0�3

 p Raw Pointers ↕

↓

Lifetime Basics

Every entity in a program has some (temporal / spatial) extent where it is relevant, i.e., alive.
Loosely speaking, this alive time can be

1. the LOC (lines of code) where an item is available (e.g., a module name).
2. the LOC between when a location is initialized with a value, and when the location is abandoned.
3. the LOC between when a location is first used in a certain way, and when that usage stops.
4. the LOC (or actual time) between when a value is created, and when that value is dropped.

Within the rest of this section, we will refer to the items above as the:
1. scope of that item, irrelevant here.
2. scope of that variable or location.
3. lifetime of that usage.
4. lifetime of that value, might be useful when discussing open file descriptors, but also irrelevant here.

Likewise, lifetime parameters in code, e.g., r: &'a S , are
concerned with LOC any location r points to needs to be accessible or locked;

"Lifetime" of Things ↕

1

2

15

unrelated to the 'existence time' (as LOC) of r itself (well, it needs to exist shorter, that's it).
&'static S means address must be valid during all lines of code.

 There is sometimes ambiguity in the docs differentiating the various scopes and lifetimes. We try to be
pragmatic here, but suggestions are welcome.

 Live lines might have been a more appropriate term …

Assume you got a r: &'c S from somewhere it means:
r holds an address of some S ,
any address r points to must and will exist for at least 'c ,
the variable r itself cannot live longer than 'c .

{
 let b = S(3);
 {
 let c = S(2);
 let r: &'c S = &c; �� Does not quite work since we can't name lifetimes of
local
 { �� variables in a function body, but very same principle
applies
 let a = S(0); �� to functions next page.

 r = &a; �� Location of `a` does not live suff�cient many lines ��
not ok.
 r = &b; �� Location of `b` lives all lines of `c` and more �� ok.
 }
 }
}

Assume you got a mut r: &mut 'c S from somewhere.
That is, a mutable location that can hold a mutable reference.

As mentioned, that reference must guard the targeted memory.
However, the 'c part, like a type, also guards what is allowed into r .
Here assiging &b (0�6) to r is valid, but &a (0�3) would not, as only &b lives equal or longer than &c .

1

2

 ▼

 S(2) 0�a

 c r Meaning of r: &'c S ↕

 ▼

 S(0) S(3) S(2) 0�6

⛔

 a b c r Typelikeness of Lifetimes ↕

16

let mut b = S(0);
let r = &mut b;

b = S(4); �� Will fail since `b` in borrowed state.

print_byte(r);

Once the address of a variable is taken via &b or &mut b the variable is marked as borrowed.
While borrowed, the content of the address cannot be modified anymore via original binding b .
Once address taken via &b or &mut b stops being used (in terms of LOC) original binding b works again.

 ▼

 0�6

S(4)

⛔

 b Borrowed State ↕

Lifetimes in Functions

fn f(x: &S, y:&S) �� &u8 { … }

let b = S(1);
let c = S(2);

let r = f(&b, &c);

When calling functions that take and return references two interesting things happen:
The used local variables are placed in a borrowed state,
But it is during compilation unknown which address will be returned.

let b = S(1);
let c = S(2);

let r = f(&b, &c);

let a = b; �� Are we allowed to do this?
let a = c; �� Which one is _really_ borrowed?

print_byte(r);

Since f can return only one address, not in all cases b and c need to stay locked.
In many cases we can get quality-of-life improvements.

 S(1) S(2) ? 0�6 0�a

 b c r x y Function Parameters ↕

 S(1) S(2) ?

 a b c r Problem of 'Borrowed' Propagation ↕

17

Notably, when we know one parameter couldn't have been used in return value anymore.

fn f<'b, 'c>(x: &'b S, y: &'c S) �� &'c u8 { … }

let b = S(1);
let c = S(2);

let r = f(&b, &c); �� We know returned reference is `c`�based, which must stay locked,
 �� while `b` is free to move.

let a = b;

print_byte(r);

Lifetime parameters in signatures, like 'c above, solve that problem.
Their primary purpose is:

outside the function, to explain based on which input address an output address could be
generated,
within the function, to guarantee only addresses that live at least 'c are assigned.

The actual lifetimes 'b , 'c are transparently picked by the compiler at call site, based on the borrowed
variables the developer gave.
They are not equal to the scope (which would be LOC from initialization to destruction) of b or c , but only a
minimal subset of their scope called lifetime, that is, a minmal set of LOC based on how long b and c need
to be borrowed to perform this call and use the obtained result.
In some cases, like if f had 'c: 'b instead, we still couldn't distinguish and both needed to stay locked.

let mut c = S(2);

let r = f(&c);
let s = r;
 �� �� Not here, `s` prolongs locking of `c`.

print_byte(s);

let a = c; �� �� But here, no more use of `r` or `s`.

A variable location is unlocked again once the last use of any reference that may point to it ends.

 ▼

 S(1) S(2) y + _

 a b c r Lifetimes Propagate Borrowed State ↕

 S(2)

 a c Unlocking ↕

Advanced 🝖

18

�� Return short ('b) reference
fn f1sr<'b, 'a>(rb: &'b &'a S) �� &'b S { �rb }
fn f2sr<'b, 'a>(rb: &'b &'a mut S) �� &'b S { �rb }
fn f3sr<'b, 'a>(rb: &'b mut &'a S) �� &'b S { �rb }
fn f4sr<'b, 'a>(rb: &'b mut &'a mut S) �� &'b S { �rb }

�� Return short ('b) mutable reference.
�� f1sm<'b, 'a>(rb: &'b &'a S) �� &'b mut S { �rb } �� M
�� f2sm<'b, 'a>(rb: &'b &'a mut S) �� &'b mut S { �rb } �� M
�� f3sm<'b, 'a>(rb: &'b mut &'a S) �� &'b mut S { �rb } �� M
fn f4sm<'b, 'a>(rb: &'b mut &'a mut S) �� &'b mut S { �rb }

�� Return long ('a) reference.
fn f1lr<'b, 'a>(rb: &'b &'a S) �� &'a S { �rb }
�� f2lr<'b, 'a>(rb: &'b &'a mut S) �� &'a S { �rb } �� L
fn f3lr<'b, 'a>(rb: &'b mut &'a S) �� &'a S { �rb }
�� f4lr<'b, 'a>(rb: &'b mut &'a mut S) �� &'a S { �rb } �� L

�� Return long ('a) mutable reference.
�� f1lm<'b, 'a>(rb: &'b &'a S) �� &'a mut S { �rb } �� M
�� f2lm<'b, 'a>(rb: &'b &'a mut S) �� &'a mut S { �rb } �� M
�� f3lm<'b, 'a>(rb: &'b mut &'a S) �� &'a mut S { �rb } �� M
�� f4lm<'b, 'a>(rb: &'b mut &'a mut S) �� &'a mut S { �rb } �� L

�� Now assume we have a `ra` somewhere
let mut ra: &'a mut S = …;

let rval = f1sr(���ra); �� OK
let rval = f2sr(��mut �ra);
let rval = f3sr(&mut &�ra);
let rval = f4sr(&mut ra);

�� rval = f1sm(���ra); �� Would be bad, since rval would be mutable
�� rval = f2sm(��mut �ra); �� reference obtained from broken mutability
�� rval = f3sm(&mut &�ra); �� chain.
let rval = f4sm(&mut ra);

let rval = f1lr(���ra);
�� rval = f2lr(��mut �ra); �� If this worked we'd have `rval` and `ra` …
let rval = f3lr(&mut &�ra);
�� rval = f4lr(&mut ra); �� … now (mut) aliasing `S� in compute below.

�� rval = f1lm(���ra); �� Same as above, fails for mut�chain reasons.
�� rval = f2lm(��mut �ra); �� "
�� rval = f3lm(&mut &�ra); �� "
�� rval = f4lm(&mut ra); �� Same as above, fails for aliasing reasons.

�� Some f�ctitious place where we use `ra` and `rval`, both alive.
compute(ra, rval);

Here (M) means compilation fails because mutability error, (L) lifetime error. Also, dereference �rb not strictly necessary, just added for clarity.

f_sr cases always work, short reference (only living 'b) can always be produced.
f_sm cases usually fail simply because mutable chain to S needed to return &mut S .
f_lr cases can fail because returning &'a S from &'a mut S to caller means there would now exist two
references (one mutable) to same S which is illegal.

 ▼ ▼
 S(1) 0�2 0�6 0�2

 a ra rb rval References to References ↕

19

Same as ptrptr on platform.

↕ Examples expand by clicking.

Memory Layout
Byte representations of common types.

Basic Types

Essential types built into the core of the language.

Boolean and Numeric Types

boolbool u8u8, i8i8 u16u16, i16i16

 u32u32, i32i32

 u64u64, i64i64

u128u128, i128i128

 f32f32

 f64f64

usizeusize, isizeisize

f_lm cases always fail for combination of reasons above.

{
 let f = |x, y| (S(x), S(y)); �� Function returning two 'Droppables'.

 let (x1, y) = f(1, 4); �� S(1) - Scope S(4) - Scope
 let (x2, _) = f(2, 5); �� S(2) - Scope S(5) - Immediately
 let (ref x3, _) = f(3, 6); �� S(3) - Scope S(6) - Scope

 println!("…");
}

Here Scope means contained value lives until end of scope, i.e., past the println!().

Functions or expressions producing movable values must be handled by callee.
Values stores in 'normal' bindings are kept until end of scope, then dropped.
Values stored in _ bindings are usually dropped right away.
However, sometimes references (e.g., ref x3) can keep value (e.g., the tuple (S(3), S(6))) around for
longer, so S(6) , being part of that tuple can only be dropped once reference to its S(3) sibling disappears).

 S(1)
▼_ Drop and _ ↕

REF REF

https://doc.rust-lang.org/stable/reference/types/boolean.html
https://doc.rust-lang.org/stable/reference/types/boolean.html
https://doc.rust-lang.org/stable/reference/types/numeric.html
https://doc.rust-lang.org/stable/reference/types/numeric.html

20

Unsigned Types

Type Max Value

u8 255

u16 65_535

u32 4_294_967_295

u64 18_446_744_073_709_551_615

u128 340_282_366_920_938_463_463_374_607_431_768_211_455

usize Depending on platform pointer size, same as u16 , u32 , or u64 .

Signed Types

Type Max Value

i8 127

i16 32_767

i32 2_147_483_647

i64 9_223_372_036_854_775_807

i128 170_141_183_460_469_231_731_687_303_715_884_105_727

isize Depending on platform pointer size, same as i16 , i32 , or i64 .

Type Min Value

i8 -128

i16 -32_768

i32 -2_147_483_648

i64 -9_223_372_036_854_775_808

i128 -170_141_183_460_469_231_731_687_303_715_884_105_728

isize Depending on platform pointer size, same as i16 , i32 , or i64 .

Float Types

f32 f64 Property

3.40 ⋅ 10 1.79 ⋅ 10 Maximum float value.

3.40 ⋅ 10 2.23 ⋅ 10 Minimum positive float value.

16_777_216 9_007_199_254_740_992 Maximum integer value losslessly representable.

Float values approximated for visual clarity. Negative limits are values multipled with -1.

38 308

-38 -308

Float Internals🝖

21

Sample bit representation for a f32 :

Explanation:

f32 S (1) E (8) F (23) Value

Normalized number ± 1 to 254 any ±(1.F) * 2

Denormalized number ± 0 non-zero ±(0.F) * 2

Zero ± 0 0 ±0

Infinity ± 255 0 ±∞

NaN ± 255 non-zero NaN

Similarly, for f64 types this would look like:

f64 S (1) E (11) F (52) Value

Normalized number ± 1 to 2046 any ±(1.F) * 2

Denormalized number ± 0 non-zero ±(0.F) * 2

Zero ± 0 0 ±0

Infinity ± 2047 0 ±∞

NaN ± 2047 non-zero NaN

 Float types follow IEEE 754-2008 and depend on platform endianness.

*

SS EE EE EE EE EE EE EE EE FF

2
E-127

2
-126

2
E-1023

2
-1022

*

Casting Pitfalls 🛑

Cast Gives Note

3.9_f32 as u8 3 Truncates, consider x.round() first.

314_f32 as u8 255 Takes closest available number.

f32��INFINITY as u8 255 Same, treats INFINITY as really large number.

f32��NAN as u8 0 -

_314 as u8 58 Truncates excess bits.

_257 as i8 1 Truncates excess bits.

_200 as i8 -56 Truncates excess bits, MSB might then also signal negative.

1

Arithmetic Pitfalls 🛑

Operation Gives Note

200_u8 / 0_u8 Compile error. -

200_u8 / _0 Panic. Regular math may panic; here: division by zero.

200_u8 + 200_u8 Compile error. -

200_u8 + _200 Panic. Consider checked_ , wrapping_ , … instead.

200_u8 + _200 144 In release mode this will overflow.

1

d, r

d STD

r

https://en.wikipedia.org/wiki/IEEE_754-2008_revision
https://doc.rust-lang.org/std/primitive.isize.html#method.checked_add
https://doc.rust-lang.org/std/primitive.isize.html#method.checked_add

22

 Expression _100 means anything that might contain the value 100, e.g., 100_i32, but is opaque to compiler.

 Debug build.
 Release build.

Textual Types

charchar

Any Unicode scalar.

 strstr

… UU TT FF -- 88 … unspecified times

Rarely seen alone, but as &&strstr instead.

Operation Gives Note

-128_i8 * -1 Compile error. Would overflow (128_i8 doesn't exist).

-128_i8 * _1neg Panic. -

-128_i8 * _1neg -128 Overflows back to -128 in release mode.

1_u8 / 2_u8 0 Other integer division truncates.

0.8_f32 + 0.1_f32 0.90000004 -

1.0_f32 / 0.0_f32 f32��INFINITY -

0.0_f32 / 0.0_f32 f32��NAN -

x < f32��NAN false NAN comparisons always return false.

x > f32��NAN false NAN comparisons always return false.

f32��NAN �� f32��NAN false Use f32��is_nan() instead.

1

d

r

STD

1

d

r

REF

Basics

Type Description

char Always 4 bytes and only holds a single Unicode scalar value .

str An u8 -array of unknown length guaranteed to hold UTF-8 encoded code points.

🔗

Usage

Chars Description

let c = 'a'; Often a char (unicode scalar) can coincide with your intuition of character.

let c = '❤'; It can also hold many Unicode symbols.

let c = '❤ '; But not always. Given emoji is two char (see Encoding) and can't be held by c .

c = 0�ffff_ffff; Also, chars are not allowed to hold arbitrary bit patterns.

 Fun fact, due to the Zero-width joiner (⨝) what the user perceives as a character can get even more unpredictable: � is in fact 5 chars 👨⨝👩⨝

👧, and rendering engines are free to either show them fused as one, or separately as three, depending on their abilities.

Strings Description

let s = "a"; A str is usually never held directly, but as &str , like s here.

let s = "❤❤ "; It can hold arbitrary text, has variable length per c., and is hard to index.

🛑 1

🛑

1

https://doc.rust-lang.org/stable/reference/types/textual.html
https://doc.rust-lang.org/stable/reference/types/textual.html
https://doc.rust-lang.org/std/primitive.f32.html#method.is_nan
https://doc.rust-lang.org/std/primitive.f32.html#method.is_nan
https://www.unicode.org/glossary/#unicode_scalar_value
https://www.unicode.org/glossary/#unicode_scalar_value
https://en.wikipedia.org/wiki/Zero-width_joiner

23

Custom Types

Basic types definable by users. Actual layout is subject to representation; padding can be present.

TT

Sized

 TT�� ??SizedSized

←TT→

Maybe DST

 [[TT;; n n]]

TT TT TT … n times

Fixed array of nn elements.

 [[TT]]

… TT TT TT … unspecified times

Slice type of unknown-many elements. Neither
SizedSized (nor carries lenlen information), and most

often lives behind reference as &&[[TT]] .

 ((AA,, BB,, CC))

AA BB CC

or maybe

BB AA CC

Unless a representation is forced
(e.g., via ��repr(C)]��repr(C)]), type layout
unspecified.

 structstruct SS {{ b b:: BB,, c c:: CC }}

BB CC

or maybe

CC ↦↦ BB

Compiler may also add padding.

Also note, two types A(X, Y) and B(X, Y) with exactly the same fields can still have differing layout; never transmute() without representation guarantees.

These sum types hold a value of one of their sub types:

Encoding🝖

let s = "I ❤ Rust";

let t = "I ❤ Rust";

Variant Memory Representation

s.as_bytes() 49 20 e2 9d a4 20 52 75 73 74

s.chars()
49 00 00 00 20 00 00 00 64 27 00 00 20 00 00 00 52 00 00 00 75 00 00 00 73 00
…

t.as_bytes() 49 20 e2 9d a4 ef b8 8f 20 52 75 73 74

t.chars()
49 00 00 00 20 00 00 00 64 27 00 00 0f fe 01 00 20 00 00 00 52 00 00 00 75 00

…

 Result then collected into array and transmuted to bytes.
 Values given in hex, on x86.
 Notice how ❤, having Unicode Code Point (U+2764), is represented as 64 27 00 00 inside the char, but got UTF-8 encoded to e2 9d a4 in the
str.

 Also observe how the emoji Red Heart ❤ , is a combination of ❤ and the U+FE0F Variation Selector, thus t has a higher char count than s.

 For what seem to be browser bugs Safari and Edge render the hearts in Footnote 3 and 4 wrong, despite being able to differentiate them
correctly in s and t above.

2

3

1

4

1

1

2

3

4

💬

REF REF

TT

↓ ↓

↓

Zero-Sized

structstruct SS;;

↓

STD

https://doc.rust-lang.org/stable/reference/type-layout.html
https://doc.rust-lang.org/stable/reference/type-layout.html
https://doc.rust-lang.org/stable/reference/type-layout.html#representations
https://doc.rust-lang.org/stable/reference/type-layout.html#representations
https://doc.rust-lang.org/std/mem/fn.transmute.html
https://doc.rust-lang.org/std/mem/fn.transmute.html
https://codepoints.net/U+2764
https://en.wikipedia.org/wiki/UTF-8#Description
https://emojipedia.org/red-heart/
https://emojipedia.org/red-heart/
https://emojipedia.org/red-heart/
https://codepoints.net/U+FE0F

24

No guarantees.
|

| | |

|

enumenum EE {{ AA,, BB,, CC }}

TagTag AA

exclusive or

TagTag BB

exclusive or

TagTag CC

Safely holds A or B or C, also
called 'tagged union', though
compiler may squeeze tag
into 'unused' bits.

 unionunion {{ … … }}

AA

unsafe or

BB

unsafe or

CC

Can unsafely reinterpret
memory. Result might
be undefined.

References & Pointers

References give safe access to 3 party memory, raw pointers unsafe access. The corresponding mut types have an identical data layout to their
immutable counterparts.

&&'a'a TT

ptrptr metameta

Must target some valid tt of TT ,

and any such target must exist for
at least 'a'a .

 ��constconst TT

Pointer Meta

Many reference and pointer types can carry an extra field, pointer metadata. It can be the element- or byte-length of the target, or a pointer to

a vtable. Pointers with meta are called fat, otherwise thin.

&&'a'a TT

ptrptr

No meta for
sized target.
(pointer is thin).

 &&'a'a TT

ptrptr lenlen

If TT is a DST structstruct such as
SS {{ x x:: [[u8u8]] }} meta field lenlen is

count of dyn. sized content.

 &&'a'a [[TT]]

ptrptr lenlen

Regular slice reference (i.e., the
reference type of a slice type [[TT]])
often seen as &&[[TT]] if 'a'a elided.

&&'a'a strstr

ptrptr lenlen

String slice reference (i.e., the
reference type of string type strstr),
with meta lenlen being byte length.

rd

2/4/8 2/4/8 ptrptr metameta2/4/8 2/4/8

STD

2/4/8 2/4/8 2/4/8 2/4/8 2/4/8

↑

2/4/8 2/4/8

←TT→
(any mem)

TT
(any mem)

←TT→
(any mem)

… TT TT …
(any mem)

… UU TT FF -- 88

…
(any mem)

https://doc.rust-lang.org/nightly/std/ptr/trait.Pointee.html#pointer-metadata
https://doc.rust-lang.org/nightly/std/ptr/trait.Pointee.html#pointer-metadata

25

Anonymous closure type C1 Anonymous closure type C2

| |

| |

Closures

Ad-hoc functions with an automatically managed data block capturing environment where closure was defined. For example, if you had:

let y = ���;
let z = ���;

with_closure(move |x| x + y.f() + z); �� y and z are moved into closure instance (of type C1)
with_closure(|x| x + y.f() + z); �� y and z are pointed at from closure instance (of type C2)

Then the generated, anonymous closures types C1 and C2 passed to with_closure() would look like:

movemove ||xx|| x x ++ y y..ff(()) ++ z z

YY ZZ

 ||xx|| x x ++ y y..ff(()) ++ z z

ptrptr ptrptr

Also produces anonymous fn such as f (C1, X) or f (&C2, X) . Details depend on which FnOnce , FnMut , Fn ... is supported, based on properties of captured types.

 A bit oversimplified a closure is a convenient-to-write 'mini function' that accepts parameters but also needs some local variables to do its job. It is therefore a type (containing the
needed locals) and a function. 'Capturing the environment' is a fancy way of saying that and how the closure type holds on to these locals, either by moved value, or by pointer. See

Closures in APIs for various implications.

Standard Library Types

Rust's standard library combines the above primitive types into useful types with special semantics, e.g.:

&&'a'a dyndyn TraitTrait

ptrptr ptrptr2/4/8 2/4/8

Meta points to vtable, where **DropDrop����dropdrop(()) ,
**TraitTrait����ff(()) , … are pointers to their respective
implimpl for TT .

REF, 1

2/4/8 2/4/8

c1 c2

1

↓

←TT→
(any mem)

**DropDrop����dropdrop((&&mutmut TT))

sizesize

alignalign

**TraitTrait����ff((&&TT,, … …))

**TraitTrait����gg((&&TT,, … …))
(static vtable)

YY
(any mem)

ZZ
(any mem)

https://doc.rust-lang.org/stable/reference/types/closure.html#capture-modes
https://doc.rust-lang.org/stable/reference/types/closure.html#capture-modes

26

| |

| | |

| |

UnsafeCellUnsafeCell<<TT>>

←TT→

Magic type allowing
aliased mutability.

 CellCell<<TT>>

←TT→

Allows TT 's
to move in
and out.

 RefCellRefCell<<TT>>

borrowedborrowed ←TT→

Also support dynamic
borrowing of TT . Like CellCell this
is SendSend , but not SyncSync .

 ManuallyDropManuallyDrop<<TT>>

←TT→

Prevents TT����dropdrop(()) from
being called.

AtomicUsizeAtomicUsize

usizeusize

Other atomic similarly.

 OptionOption<<TT>>

TagTag

or

TagTag TT

Tag may be omitted for
certain T, e.g., NonNullNonNull .

 ResultResult<<TT,, EE>>

TagTag EE

or

TagTag TT

Either some error EE or value
of TT .

 MaybeUninitMaybeUninit<<TT>>

U��̔�U��̔�n����d���̦��̓�ě͎̱͒fï�����ne̻̅ḓ̓n����d���̦��̓�ě͎̱͒fï�����ne̻̅ḓ̓

unsafe or

TT

Uninitialized memory or
some TT . Only legal way
to work with uninit data.

 All depictions are for illustrative purposes only. The fields should exist in latest stable , but Rust makes no guarantees about their layouts,

and you must not attempt to unsafely access anything unless the docs allow it.

Order-Preserving Collections

BoxBox<<TT>>

ptrptr metameta

For some TT stack proxy may carry
meta (e.g., BoxBox<<[[TT]]>>).

 VecVec<<TT>>

ptrptr lenlen capacitycapacity

Regular growable array vector of single type.

LinkedListLinkedList<<TT>>

headhead tailtail lenlen

Elements headhead and tailtail both nullnull or point to nodes on
the heap. Each node can point to its prevprev and nextnext node.
Eats your cache (just look at the thing!); don't use unless
you evidently must.

 VecDequeVecDeque<<TT>>

headhead lenlen ptrptr capacitycapacity

Index headhead selects in array-as-ringbuffer. This means content may be
non-contiguous and empty in the middle, as exemplified above.

Other Collections

HashMapHashMap<<KK,, VV>>

bmaskbmask ctrlctrl leftleft lenlen

Stores keys and values on heap according to hash value, SwissTable
implementation via hashbrown. HashSetHashSet identical to HashMapHashMap ,

just type VV disappears. Heap view grossly oversimplified.

 BinaryHeapBinaryHeap<<TT>>

ptrptr capacitycapacity lenlen

Heap stored as array with 22 elements per layer. Each TT

can have 2 children in layer below. Each TT larger than its
children.

STD STD STD STD

STD

2/4/8

STD

STD

STD STD

🛑

STD

2/4/8 2/4/8

↑

STD

2/4/8 2/4/8 2/4/8

STD🝖

2/4/8 2/4/8 2/4/8

🛑

STD

2/4/8 2/4/8 2/4/8 2/4/8

STD

2/4/8 2/4/8 2/4/8 2/4/8

STD

🛑

STD

2/4/8 2/4/8 2/4/8

NN

←TT→
(heap)

TT TT … len

← capacity → (heap)

nextnext prevprev TT2/4/8 2/4/8

(heap)

TT … empty … TT HH

← capacity → (heap)

KK��VV KK��VV … KK��VV … KK��VV
Oversimplified! (heap)

TT TT TT TT TT … len00 11 11 22 22

← capacity → (heap)

https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.Cell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/cell/struct.RefCell.html
https://doc.rust-lang.org/std/mem/struct.ManuallyDrop.html
https://doc.rust-lang.org/std/mem/struct.ManuallyDrop.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/ptr/struct.NonNull.html
https://doc.rust-lang.org/std/ptr/struct.NonNull.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/collections/struct.LinkedList.html
https://doc.rust-lang.org/std/collections/struct.LinkedList.html
https://doc.rust-lang.org/std/collections/struct.VecDeque.html
https://doc.rust-lang.org/std/collections/struct.VecDeque.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://www.youtube.com/watch?v=ncHmEUmJZf4
https://github.com/rust-lang/hashbrown
https://doc.rust-lang.org/std/collections/struct.HashSet.html
https://doc.rust-lang.org/std/collections/struct.HashSet.html
https://doc.rust-lang.org/std/collections/struct.BinaryHeap.html
https://doc.rust-lang.org/std/collections/struct.BinaryHeap.html
https://doc.rust-lang.org/std/mem/union.MaybeUninit.html
https://doc.rust-lang.org/std/mem/union.MaybeUninit.html

27

| | |

|

| |

|

Owned Strings

StringString

ptrptr capacitycapacity lenlen

Observe how StringString differs from &&strstr and &&[[charchar]] .

 CStringCString

ptrptr lenlen

NUL-terminated but w/o NUL in middle.

 OsStringOsString

Platform Defined

Encapsulates how operating system
represents strings (e.g., WTF-8 on
Windows).

PathBufPathBuf

OsStringOsString

Encapsulates how operating system
represents paths.

Shared Ownership

If the type does not contain a Cell for T , these are often combined with one of the Cell types above to allow shared de-facto mutability.

RcRc<<TT>>

ptrptr metameta

Share ownership of TT in same thread. Needs nested CellCell

or RefCellRefCell to allow mutation. Is neither SendSend nor SyncSync .

 ArcArc<<TT>>

ptrptr metameta

Same, but allow sharing between threads IF contained
TT itself is SendSend and SyncSync .

MutexMutex<<TT>> / RwLockRwLock<<TT>>

innerinner poisonpoison ←TT→

Inner fields depend on platform. Needs to be
held in ArcArc to be shared between decoupled
threads, or via scopescope(()) for scoped threads.

 CowCow<<'a'a,, TT>>

TagTag ← TT����OwnedOwned →

or

TagTag ptrptr

Holds read-only reference to
some TT , or owns it's ToOwnedToOwned
analog.

Standard Library

One-Liners

Snippets that are common, but still easy to forget. See Rust Cookbook for more.

STD

2/4/8 2/4/8 2/4/8

STD

2/4/8 2/4/8

STD

STD

STD

2/4/8 2/4/8

STD

2/4/8 2/4/8

STD STD

2/4/8

STD

STD

2/4/8

STD

🔗

UU TT FF -- 88 … len

← capacity → (heap)

AA BB CC … len … ∅∅
(heap)

 /
(heap)

 /
(heap)

strngstrng weakweak ←TT→2/4/8 2/4/8

(heap)

strngstrng weakweak ←TT→2/4/8 2/4/8

(heap)

←TT→
(any mem)

https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://doc.rust-lang.org/std/ffi/struct.OsString.html
https://simonsapin.github.io/wtf-8/
https://doc.rust-lang.org/std/path/struct.PathBuf.html
https://doc.rust-lang.org/std/path/struct.PathBuf.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/std/thread/fn.scope.html
https://doc.rust-lang.org/std/thread/fn.scope.html
https://doc.rust-lang.org/std/borrow/enum.Cow.html
https://doc.rust-lang.org/std/borrow/enum.Cow.html
https://doc.rust-lang.org/std/borrow/trait.ToOwned.html
https://doc.rust-lang.org/std/borrow/trait.ToOwned.html
https://rust-lang-nursery.github.io/rust-cookbook/
https://rust-lang-nursery.github.io/rust-cookbook/

28

Strings

Intent Snippet

Concatenate strings (any Display that is). format!("{x}{y}")

Append string (any Display to any Write). write!(x, "{y}")

Split by separator pattern. s.split(pattern)

 … with &str s.split("abc")

 … with char s.split('/')

 … with closure s.split(char��is_numeric)

Split by whitespace. s.split_whitespace()

Split by newlines. s.lines()

Split by regular expression. Regex��new(r"\s")��split("one two three")

 Allocates; if x or y are not going to be used afterwards consider using write! or Add.

 Requires regex crate.

↓ 1 '21

'21

STD 🔗

2

1 std��ops��
2

I/O

Intent Snippet

Create a new file File��create(PATH)?

 Same, via
OpenOptions

OpenOptions��new().create(true).write(true).truncate(true).open(PATH)?

Macros

Intent Snippet

Macro w. variable arguments macro_rules! var_args { ($($args:expr),*) �� {{ }} }

 Using args , e.g., calling f multiple times. $(f($args);)*

Transforms 🔥

Starting Type Resource

Option<T> �� … See the Type-Based Cheat Sheet

Result<T, R> �� … See the Type-Based Cheat Sheet

Iterator<Item=T> �� … See the Type-Based Cheat Sheet

&[T] �� … See the Type-Based Cheat Sheet

Future<T> �� … See the Futures Cheat Sheet

Esoterics🝖

https://doc.rust-lang.org/std/str/pattern/trait.Pattern.html
https://doc.rust-lang.org/std/str/pattern/trait.Pattern.html
https://stackoverflow.com/a/38138985
https://stackoverflow.com/a/38138985
https://crates.io/crates/regex
https://upsuper.github.io/rust-cheatsheet/
https://upsuper.github.io/rust-cheatsheet/
https://upsuper.github.io/rust-cheatsheet/
https://upsuper.github.io/rust-cheatsheet/
https://rufflewind.com/img/rust-futures-cheatsheet.html

29

|
|
|

|
|
|

|
|
|

|
|
|

Thread Safety

Assume you hold some variables in Thread 1, and want to either move them to Thread 2, or pass their references to Thread 3. Whether this is

allowed is governed by Send and Sync respectively:

Example Explanation

Mutex<u32> Both Send and Sync . You can safely pass or lend it to another thread.

Cell<u32> Send , not Sync . Movable, but its reference would allow concurrent non-atomic writes.

MutexGuard<u32> Sync , but not Send . Lock tied to thread, but reference use could not allow data race.

Rc<u32> Neither since it is easily clonable heap-proxy with non-atomic counters.

Trait Send !Send

Sync Most types … Arc<T> , Mutex<T> MutexGuard<T> , RwLockReadGuard<T>

!Sync Cell<T> , RefCell<T> Rc<T> , &dyn Trait , �const T

 If T is Sync.

 If T is Send.
 If you need to send a raw pointer, create newtype struct Ptr(*const u8) and unsafe impl Send for Ptr {}. Just ensure you may send it.

Iterators

Processing elements in a collection.

Intent Snippet

Cleaner closure captures
wants_closure({ let c = outer.clone(); move �� use_clone(c)
})

Fix inference in 'try ' closures iter.try_for_each(|x| { Ok::<(), Error>(()) })?;

Iterate and edit &mut [T] if T
Copy.

Cell��from_mut(mut_slice).as_slice_of_cells()

Get subslice with length. &original_slice[offset��][��length]

Canary so trait T is object safe. const _: Option<&dyn T> = None;

STD STD

 Mutex<u32> Cell<u32> MutexGuard<u32> Rc<u32> Thread 1

 Mutex<u32> Cell<u32> MutexGuard<u32> Rc<u32> Thread 2

 &Mutex<u32> &Cell<u32> &MutexGuard<u32> &Rc<u32> Thread 3

1,2 2 1 1

2 2 3

1

2

3

Basics

There are, broadly speaking, four styles of collection iteration:

Style Description

for x in c { ��� } Imperative, useful w. side effects, interdepend., or need to break flow early.

c.iter().map().f�lter() Functional, often much cleaner when only results of interest.

c_iter.next() Low-level, via explicit Iterator��next() invocation.

c.get(n) Manual, bypassing official iteration machinery.

STD 🝖

https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Sync.html
https://doc.rust-lang.org/std/marker/trait.Sync.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html#tymethod.next
https://doc.rust-lang.org/std/iter/trait.Iterator.html#tymethod.next

30

Opinion — Functional style is often easiest to follow, but don't hesitate to use for if your .iter() chain

turns messy. When implementing containers iterator support would be ideal, but when in a hurry it can
sometimes be more practical to just implement .len() and .get() and move on with your life.

💬

Obtaining

Basics

Assume you have a collection c of type C you want to use:

c.into_iter() — Turns collection c into an Iterator i and consumes c . Std. way to get iterator.
c.iter() — Courtesy method some collections provide, returns borrowing Iterator, doesn't consume c .
c.iter_mut() — Same, but mutably borrowing Iterator that allow collection to be changed.

The Iterator

Once you have an i :

i.next() — Returns Some(x) next element c provides, or None if we're done.

For Loops

for x in c {} — Syntactic sugar, calls c.into_iter() and loops i until None .

 Requires IntoIterator for C to be implemented. Type of item depends on what C was.

 If it looks as if it doesn't consume c that's because type was Copy. For example, if you call (&c).into_iter() it will invoke .into_iter() on &c

(which will consume a copy of the reference and turn it into an Iterator), but the original c remains untouched.

1 STD 2

1 STD

2

Creating

Essentials

Let's assume you have a struct Collection<T> {} you authored. You should also implement:

struct IntoIter<T> {} — Create a struct to hold your iteration status (e.g., an index) for value iteration.
impl Iterator for IntoIter<T> {} — Implement Iterator��next() so it can produce elements.

At this point you have something that can behave as an Iterator, but no way of actually obtaining it. See the
next tab for how that usually works.

Collection<T> IntoIter<T>

STD

For Loops

Native Loop Support

Many users would expect your collection to just work in for loops. You need to implement:

Item = T;

⌾ Iterator

https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html

31

impl IntoIterator for Collection<T> {} — Now for x in c {} works.
impl IntoIterator for &Collection<T> {} — Now for x in &c {} works.
impl IntoIterator for &mut Collection<T> {} — Now for x in &mut c {} works.

As you can see, the IntoIterator trait is what actually connects your collection with the IntoIter struct you
created in the previous tab. The two siblings of IntoIter (Iter and IterMut) are discussed in the next tab.

Collection<T>

Iterate over T .
Iterate over &T .

&Collection<T>

Iterate over &mut T .

&mut
Collectn<T>

STD

Borrowing

Shared & Mutable Iterators

In addition, if you want your collection to be useful when borrowed you should implement:

struct Iter<T> {} — Create struct holding &Collection<T> state for shared iteration.
struct IterMut<T> {} — Similar, but holding &mut Collection<T> state for mutable iteration.
impl Iterator for Iter<T> {} — Implement shared iteration.
impl Iterator for IterMut<T> {} — Implement mutable iteration.

Also you might want to add convenience methods:

Collection��iter(&self) �� Iter ,
Collection��iter_mut(&mut self) �� IterMut .

The code for borrowing interator support is basically just a repetition of the previous steps with a slightly different
types, e.g., &T vs T .

Iter<T> IterMut<T>

Interoperability

Iterator Interoperability

To allow 3 party iterators to 'collect into' your collection implement:

impl FromIterator for Collection<T> {} — Now some_iter.collect::<Collection<_��() works.
impl Extend for Collection<T> {} — Now c.extend(other) works.

In addition, also consider adding the extra traits from iter to your previous structs:

rd

std�� STD

Item = T;

To =
IntoIter<T>

Item = &T;

To = Iter<T>
Item = &mut T;

To = IterMut<T>

Item = &T; Item = &mut T;

⌾ IntoIterator ⌾ IntoIterator
⌾ IntoIterator

⌾ Iterator ⌾ Iterator

https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
https://doc.rust-lang.org/std/iter/index.html#
https://doc.rust-lang.org/std/iter/index.html#

32

Number Conversions

As-correct-as-it-currently-gets number conversions.

↓ Have / Want → u8 … i128 f32 / f64 String

u8 … i128 u8��try_from(x)? x as f32 x.to_string()

f32 / f64 x as u8 x as f32 x.to_string()

String x.parse::<u8>()? x.parse::<f32>()? x

 If type true subset from() works directly, e.g., u32��from(my_u8).

 Truncating (11.9_f32 as u8 gives 11) and saturating (1024_f32 as u8 gives 255); c. below.
 Might misrepresent number (u64��MAX as f32) or produce Inf (u128��MAX as f32).

Also see Casting- and Arithmetic Pitfalls for more things that can go wrong working with numbers.

String Conversions

If you want a string of type …

Writing collections can be work. The good news is, if you followed all these steps your collections will feel like
first class citizens.

Collection<T> IntoIter<T> Iter<T> IterMut<T>

1 3

2

1

2

3

↑

String

If you have x of type … Use this …

String x

CString x.into_string()?

OsString x.to_str()��to_string()

PathBuf x.to_str()��to_string()

Vec<u8> String��from_utf8(x)?

&str x.to_string()

&CStr x.to_str()��to_string()

&OsStr x.to_str()��to_string()

&Path x.to_str()��to_string()

&[u8] String��from_utf8_lossy(x).to_string()

1

i

1

CString

⌾ FromIterator

⌾ Extend

⌾ DoubleEndedIt…

⌾ ExactSizeIt…

⌾ FusedIterator

⌾ DoubleEndedIt…

⌾ ExactSizeIt…

⌾ FusedIterator

⌾ DoubleEndedIt…

⌾ ExactSizeIt…

⌾ FusedIterator

33

If you have x of type … Use this …

String CString��new(x)?

CString x

OsString CString��new(x.to_str()?)?

PathBuf CString��new(x.to_str()?)?

Vec<u8> CString��new(x)?

&str CString��new(x)?

&CStr x.to_owned()

&OsStr CString��new(x.to_os_string().into_string()?)?

&Path CString��new(x.to_str()?)?

&[u8] CString��new(Vec��from(x))?

�mut c_char unsafe { CString��from_raw(x) }

1

i

1

2

OsString

If you have x of type … Use this …

String OsString��from(x)

CString OsString��from(x.to_str()?)

OsString x

PathBuf x.into_os_string()

Vec<u8> unsafe { OsString��from_encoded_bytes_unchecked(x) }

&str OsString��from(x)

&CStr OsString��from(x.to_str()?)

&OsStr OsString��from(x)

&Path x.as_os_str().to_owned()

&[u8] unsafe { OsString��from_encoded_bytes_unchecked(x.to_vec()) }

i

1

i

i

1

PathBuf

If you have x of type … Use this …

String PathBuf��from(x)

CString PathBuf��from(x.to_str()?)

OsString PathBuf��from(x)

PathBuf x

Vec<u8> unsafe { PathBuf��from(OsString��from_encoded_bytes_unchecked(x)) }

&str PathBuf��from(x)

&CStr PathBuf��from(x.to_str()?)

&OsStr PathBuf��from(x)

&Path PathBuf��from(x)

i

i

1

i

i

i

34

If you have x of type … Use this …

&[u8]
unsafe {
PathBuf��from(OsString��from_encoded_bytes_unchecked(x.to_vec())) }

1

Vec<u8>

If you have x of type … Use this …

String x.into_bytes()

CString x.into_bytes()

OsString x.into_encoded_bytes()

PathBuf x.into_os_string().into_encoded_bytes()

Vec<u8> x

&str Vec��from(x.as_bytes())

&CStr Vec��from(x.to_bytes_with_nul())

&OsStr Vec��from(x.as_encoded_bytes())

&Path Vec��from(x.as_os_str().as_encoded_bytes())

&[u8] x.to_vec()

1

1

&str

If you have x of type … Use this …

String x.as_str()

CString x.to_str()?

OsString x.to_str()?

PathBuf x.to_str()?

Vec<u8> str��from_utf8(&x)?

&str x

&CStr x.to_str()?

&OsStr x.to_str()?

&Path x.to_str()?

&[u8] str��from_utf8(x)?

1 std��

1 std��

&CStr

If you have x of type … Use this …

String CString��new(x)��as_c_str()

CString x.as_c_str()

OsString x.to_str()?

PathBuf

Vec<u8> CStr��from_bytes_with_nul(&x)?

&str

?,3

1,4

?,3

35

If you have x of type … Use this …

&CStr x

&OsStr

&Path

&[u8] CStr��from_bytes_with_nul(x)?

�const c_char unsafe { CStr��from_ptr(x) }

?

?

1,4

1

&OsStr

If you have x of type … Use this …

String OsStr��new(&x)

CString

OsString x.as_os_str()

PathBuf x.as_os_str()

Vec<u8> unsafe { OsStr��from_encoded_bytes_unchecked(&x) }

&str OsStr��new(x)

&CStr

&OsStr x

&Path x.as_os_str()

&[u8] unsafe { OsStr��from_encoded_bytes_unchecked(x) }

?

1

?

1

&Path

If you have x of type … Use this …

String Path��new(x)

CString Path��new(x.to_str()?)

OsString Path��new(x.to_str()?)

PathBuf Path��new(x.to_str()?)

Vec<u8> unsafe { Path��new(OsStr��from_encoded_bytes_unchecked(&x)) }

&str Path��new(x)

&CStr Path��new(x.to_str()?)

&OsStr Path��new(x)

&Path x

&[u8] unsafe { Path��new(OsStr��from_encoded_bytes_unchecked(x)) }

r

r

r

1

r

r

1

&[u8]

If you have x of type … Use this …

String x.as_bytes()

CString x.as_bytes()

36

 Short form x.into() possible if type can be inferred.
 Short form x.as_ref() possible if type can be inferred.

 You must ensure x comes with a valid representation for the string type (e.g., UTF-8 data for a String).
 The c_char must have come from a previous CString. If it comes from FFI see &CStr instead.

 No known shorthand as x will lack terminating 0�0. Best way to probably go via CString.
 Must ensure x actually ends with 0�0.

String Output

How to convert types into a String , or output them.

If you have x of type … Use this …

OsString x.as_encoded_bytes()

PathBuf x.as_os_str().as_encoded_bytes()

Vec<u8> &x

&str x.as_bytes()

&CStr x.to_bytes_with_nul()

&OsStr x.as_encoded_bytes()

&Path x.as_os_str().as_encoded_bytes()

&[u8] x

1

1

Other

You want And have x Use this …

�const c_char CString x.as_ptr()

i

r

1

2

3

4

APIs

Rust has, among others, these APIs to convert types to stringified output, collectively called format macros:

Macro Output Notes

format!(fmt) String Bread-and-butter "to String " converter.

print!(fmt) Console Writes to standard output.

println!(fmt) Console Writes to standard output.

eprint!(fmt) Console Writes to standard error.

eprintln!(fmt) Console Writes to standard error.

write!(dst, fmt) Buffer Don't forget to also use Write;

writeln!(dst, fmt) Buffer Don't forget to also use Write;

Method Notes

x.to_string() Produces String , implemented for any Display type.

Here fmt is string literal such as "hello {}" , that specifies output (compare "Formatting" tab) and additional
parameters.

std��io��

std��io��

STD

https://doc.rust-lang.org/std/string/trait.ToString.html
https://doc.rust-lang.org/std/string/trait.ToString.html

37

Printable Types

In format! and friends, types convert via trait Display "{}" or Debug "{�?}" , non exhaustive list:

Type Implements

String Debug, Display

CString Debug

OsString Debug

PathBuf Debug

Vec<u8> Debug

&str Debug, Display

&CStr Debug

&OsStr Debug

&Path Debug

&[u8] Debug

bool Debug, Display

char Debug, Display

u8 … i128 Debug, Display

f32 , f64 Debug, Display

! Debug, Display

() Debug

In short, pretty much everything is Debug ; more special types might need special handling or conversion to
Display .

STD STD

↑

Formatting

Each argument designator in format macro is either empty {} , {argument} , or follows a basic syntax:

{ [argument] ':' [[f�ll] align] [sign] ['#'] [width [$]] ['.' precision [$]] [type] }

Element Meaning

argument Number (0 , 1 , …), variable or name, e.g., print!("{x}") .

f�ll The character to fill empty spaces with (e.g., 0), if width is specified.

align Left (<), center (^), or right (>), if width is specified.

sign Can be + for sign to always be printed.

Alternate formatting, e.g., prettify Debug formatter ? or prefix hex with 0x .

width Minimum width (≥ 0), padding with f�ll (default to space). If starts with 0 , zero-padded.

precision Decimal digits (≥ 0) for numerics, or max width for non-numerics.

$ Interpret width or precision as argument identifier instead to allow for dynamic formatting.

type Debug (?) formatting, hex (x), binary (b), octal (o), pointer (p), exp (e) … see more.

'21 '18

STD

STD

https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/index.html#syntax
https://doc.rust-lang.org/std/fmt/index.html#sign0
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/index.html#traits

38

Tooling

Project Anatomy

Basic project layout, and common files and folders, as used by cargo .

Entry Code

📁 .cargo/ Project-local cargo configuration, may contain conf�g.toml .

📁 benches/ Benchmarks for your crate, run via cargo bench , requires nightly by default.

📁 examples/ Examples how to use your crate, they see your crate like external user would.

 my_example.rs Individual examples are run like cargo run ��example my_example .

📁 src/ Actual source code for your project.

 main.rs Default entry point for applications, this is what cargo run uses.

 lib.rs Default entry point for libraries. This is where lookup for f() starts.

📁 src/bin/ Place for additional binaries, even in library projects.

 extra.rs Additional binary, run with cargo run ��bin extra .

📁 tests/ Integration tests go here, invoked via cargo test . Unit tests often stay in src/ file.

.rustfmt.toml In case you want to customize how cargo fmt works.

.clippy.toml Special configuration for certain clippy lints, utilized via cargo clippy

build.rs Pre-build script, useful when compiling C / FFI, …

Cargo.toml Main project manifest, Defines dependencies, artifacts …

Cargo.lock For reproducible builds. Add to git for apps, consider not for libs.

rust�toolchain.toml Define toolchain override (channel, components, targets) for this project.

 On stable consider Criterion.

Minimal examples for various entry points might look like:

Format Example Explanation

{} Print the next argument using Display .

{x} Same, but use variable x from scope.

{�?} Print the next argument using Debug .

{2���} Pretty-print the 3 argument with Debug formatting.

{val:^2$} Center the val named argument, width specified by the 3 argument.

{��10.3} Left align with width 10 and a precision of 3.

{val:#x} Format val argument as hex, with a leading 0x (alternate format for x).

Full Example Explanation

println!("{}", x) Print x using Display on std. out and append new line.

println!("{x}") Same, but use variable x from scope.

format!("{a:.3} {b:?}") Convert a with 3 digits, add space, b with Debug , return String .

STD

'21

STD

rd STD

rd

STD '15 🗑

'21

STD '21

↓

🔗🝖

* 🚧

my_crate��

🝖

🔗

🔗

💬 🔗 🔗

🔗

*

Applications

https://doc.rust-lang.org/cargo/reference/config.html
https://doc.rust-lang.org/cargo/reference/config.html
https://rust-lang.github.io/rustfmt/
https://rust-lang.github.io/rust-clippy/master/index.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/reference/manifest.html
https://blog.rust-lang.org/2023/08/29/committing-lockfiles.html
https://blog.rust-lang.org/2023/08/29/committing-lockfiles.html
https://old.reddit.com/r/rust/comments/164qfjm/change_in_guidance_on_committing_lockfiles_rust/jya8ouf/
https://old.reddit.com/r/rust/comments/164qfjm/change_in_guidance_on_committing_lockfiles_rust/jya8ouf/
https://rust-lang.github.io/rustup/overrides.html
https://rust-lang.github.io/rustup/overrides.html
https://github.com/bheisler/criterion.rs
https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Display.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html
https://doc.rust-lang.org/std/fmt/trait.Debug.html

39

�� src/main.rs (default application entry point)

fn main() {
 println!("Hello, world!");
}

Libraries

�� src/lib.rs (default library entry point)

pub fn f() {} �� Is a public item in root, so it's accessible from the outside.

mod {
 pub fn g() {} �� No public path (`m` not public) from root, so `g`
} �� is not accessible from the outside of the crate.

m

Unit Tests

�� src/my_module.rs (any f�le of your project)

fn f() �� u32 { 0 }

��cfg(test)]
mod {
 use super ; �� Need to import items from parent module. Has
 �� access to non�public members.
 ��test]
 fn ff() {
 assert_eq!(f(), 0);
 }
}

test
��f

Integration Tests

�� tests/sample.rs (sample integration test)

��test]
fn my_sample() {
 assert_eq!(f(), 123); �� Integration tests (and benchmarks) 'depend' to the
crate like
} �� a 3rd party would. Hence, they only see public items.

my_crate��

40

Benchmarks🚧

�� benches/sample.rs (sample benchmark)

��[feature(test)] �� ��bench] is still experimental

extern crate ; �� Even in '18 this is needed for … reasons.
 �� Normally you don't need this in '18 code.

use {black_box, Bencher};

��bench]
fn my_algo(b: &mut Bencher) {
 b.iter(�� black_box(f())); �� `black_box` prevents `f` from being optimized
away.
}

test

test��

my_crate��

Build Scripts

�� build.rs (sample pre�build script)

fn main() {
 �� You need to rely on env. vars for target; `��cfg(…)]` are for host.
 let target_os = var("CARGO_CFG_TARGET_OS");
}

See here for list of environment variables set.

env��

*

Proc Macros🝖

�� src/lib.rs (default entry point for proc macros)

extern crate ; �� Apparently needed to be imported like this.

use TokenStream;

��proc_macro_attribute] �� Crates can now use `��my_attribute]`
pub fn my_attribute(_attr: TokenStream, item: TokenStream) �� TokenStream {
 item
}

proc_macro

proc_macro��

https://doc.rust-lang.org/cargo/reference/environment-variables.html#environment-variables-cargo-sets-for-build-scripts

41

Module trees and imports:

�� Cargo.toml

[package]
name = "my_crate"
version = "0.1.0"

[lib]
proc�macro = true

Module Trees

Modules and source files work as follows:

Module tree needs to be explicitly defined, is not implicitly built from file system tree.
Module tree root equals library, app, … entry point (e.g., lib.rs).

Actual module definitions work as follows:

A mod {} defines module in-file, while mod ; will read m.rs or m/mod.rs .
Path of .rs based on nesting, e.g., mod { mod { mod ; }}} is either a/b/c.rs or a/b/c/mod.rs .
Files not pathed from module tree root via some mod ; won't be touched by compiler!

BK EX REF

🔗

m m

a b c

m 🛑

Namespaces🝖

Rust has three kinds of namespaces:

Namespace Types Namespace Functions Namespace Macros

mod X {} fn X() {} macro_rules! X { … }

X (crate) const X� u8 = 1;

trait X {} static X� u8 = 1;

enum X {}

union X {}

struct X {}

 struct X;

 struct X();

 Counts in Types and in Functions, defines type X and constant X.

 Counts in Types and in Functions, defines type X and function X.

In any given scope, for example within a module, only one item per namespace can exist, e.g.,
enum X {} and fn X() {} can coexist
struct X; and const X cannot coexist

With a use X; all items called X will be imported.

Due to naming conventions (e.g., fn and mod are lowercase by convention) and common sense (most
developers just don't name all things X) you won't have to worry about these kinds in most cases. They can,

← 1 →

← 2 →

1

2

my_mod��

https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html
https://doc.rust-lang.org/stable/rust-by-example/mod.html#modules
https://doc.rust-lang.org/stable/rust-by-example/mod.html#modules
https://doc.rust-lang.org/stable/reference/items/modules.html#modules
https://doc.rust-lang.org/stable/reference/items/modules.html#modules
http://www.sheshbabu.com/posts/rust-module-system/
http://www.sheshbabu.com/posts/rust-module-system/

42

Cargo

Commands and tools that are good to know.

Command Description

cargo init Create a new project for the latest edition.

cargo build Build the project in debug mode (��release for all optimization).

cargo check Check if project would compile (much faster).

cargo test Run tests for the project.

cargo doc ��open Locally generate documentation for your code and dependencies.

cargo run Run your project, if a binary is produced (main.rs).

 cargo run ��bin b Run binary b . Unifies feat. with other dependents (can be confusing).

 cargo run �p w Run main of sub-worksp. w . Treats features more sanely.

cargo … ��timings Show what crates caused your build to take so long.

cargo tree Show dependency graph.

cargo +{nightly, stable} … Use given toolchain for command, e.g., for 'nightly only' tools.

cargo �nightly … Some nightly-only commands (substitute … with command below)

 rustc �� -Zunpretty=expanded Show expanded macros.

rustup doc Open offline Rust documentation (incl. the books), good on a plane!

Here cargo build means you can either type cargo build or just cargo b; and ��release means it can be replaced with �r.

These are optional rustup components. Install them with rustup component add [tool] .

Tool Description

cargo clippy Additional (lints) catching common API misuses and unidiomatic code.

cargo fmt Automatic code formatter (rustup component add rustfmt).

A large number of additional cargo plugins can be found here.

Cross Compilation

🔘 Check target is supported.

🔘 Install target via rustup target install aarch64-linux�android (for example).

🔘 Install native toolchain (required to link, depends on target).

Get from target vendor (Google, Apple, …), might not be available on all hosts (e.g., no iOS toolchain on Windows).

Some toolchains require additional build steps (e.g., Android's make�standalone�toolchain.sh).

🔘 Update ~/.cargo/conf�g.toml like this:

[target.aarch64-linux�android]
linker = "[PATH_TO_TOOLCHAIN]/aarch64-linux�android/bin/aarch64-linux�android�clang"

or

however, be a factor when designing macros.

🔥

🚧

🔗

🔗

https://rust-lang.github.io/rust-clippy/master/
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://crates.io/categories/development-tools::cargo-plugins?sort=downloads
https://doc.rust-lang.org/rustc/platform-support.html

43

[target.aarch64-linux�android]
linker = "C�/[PATH_TO_TOOLCHAIN]/prebuilt/windows�x86_64/bin/aarch64-linux�android21-clang.cmd"

🔘 Set environment variables (optional, wait until compiler complains before setting):

set CC=C�\[PATH_TO_TOOLCHAIN]\prebuilt\windows�x86_64\bin\aarch64-linux�android21-clang.cmd
set CXX=C�\[PATH_TO_TOOLCHAIN]\prebuilt\windows�x86_64\bin\aarch64-linux�android21-clang.cmd
set AR=C�\[PATH_TO_TOOLCHAIN]\prebuilt\windows�x86_64\bin\aarch64-linux�android�ar.exe
…

Whether you set them depends on how compiler complains, not necessarily all are needed.

Some platforms / configurations can be extremely sensitive how paths are specified (e.g., \ vs /) and quoted.

✔ Compile with cargo build ��target=aarch64-linux�android

Tooling Directives

Special tokens embedded in source code used by tooling or preprocessing.

Macros

Inside a declarative macro by example macro_rules! implementation these work:

Within Macros Explanation

$x:ty Macro capture (here a type).

 $x:item An item, like a function, struct, module, etc.

 $x:block A block {} of statements or expressions, e.g., { let x = 5; }

 $x:stmt A statement, e.g., let x = 1 + 1; , String��new(); or vec![];

 $x:expr An expression, e.g., x , 1 + 1 , String��new() or vec![]

 $x:pat A pattern, e.g., Some(t) , (17, 'a') or _ .

 $x:ty A type, e.g., String , usize or Vec<u8> .

 $x:ident An identifier, for example in let x = 0; the identifier is x .

 $x:path A path (e.g., foo , �� replace , transmute::<_, int>).

 $x:literal A literal (e.g., 3 , "foo" , b"bar" , etc.).

 $x:lifetime A lifetime (e.g., 'a , 'static , etc.).

 $x:meta A meta item; the things that go inside ��…] and ��[…] attributes.

 $x:vis A visibility modifier; pub , pub(crate) , etc.

 $x:tt A single token tree, see here for more details.

$crate Special hygiene variable, crate where macros is defined.

BK BK EX REF

std��mem��

?

Documentation

Inside a doc comment these work:BK EX REF

https://doc.rust-lang.org/book/ch19-06-macros.html#declarative-macros-with-macro_rules-for-general-metaprogramming
https://doc.rust-lang.org/book/ch19-06-macros.html#declarative-macros-with-macro_rules-for-general-metaprogramming
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/stable/rust-by-example/macros.html#macro_rules
https://doc.rust-lang.org/stable/rust-by-example/macros.html#macro_rules
https://doc.rust-lang.org/stable/reference/macros-by-example.html
https://doc.rust-lang.org/stable/reference/macros-by-example.html
https://stackoverflow.com/a/40303308
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html#making-useful-documentation-comments
https://doc.rust-lang.org/stable/rust-by-example/meta/doc.html#documentation
https://doc.rust-lang.org/stable/rust-by-example/meta/doc.html#documentation
https://doc.rust-lang.org/stable/reference/comments.html#doc-comments
https://doc.rust-lang.org/stable/reference/comments.html#doc-comments

44

Within Doc Comments Explanation

���…��� Include a doc test (doc code running on cargo test).

���X,Y …��� Same, and include optional configurations; with X , Y being …

 rust Make it explicit test is written in Rust; implied by Rust tooling.

 Compile test. Run test. Fail if panic. Default behavior.

 should_panic Compile test. Run test. Execution should panic. If not, fail test.

 no_run Compile test. Fail test if code can't be compiled, Don't run test.

 compile_fail Compile test but fail test if code can be compiled.

 ignore Do not compile. Do not run. Prefer option above instead.

 edition2018 Execute code as Rust '18; default is '15.

Hide line from documentation (��� # use hidden; ���).

[`S�] Create a link to struct, enum, trait, function, … S .

[`S�](crate��S) Paths can also be used, in the form of markdown links.

-

x��

��[globals]

Attributes affecting the whole crate or app:

Opt-Out's On Explanation

��[no_std] C Don't (automatically) import std ; use core instead.

��[no_implicit_prelude] CM Don't add prelude , need to manually import None , Vec , …

��[no_main] C Don't emit main() in apps if you do that yourself.

Opt-In's On Explanation

��[feature(a, b, c)] C Rely on f. that may not get stabilized, c. Unstable Book.

Builds On Explanation

��[windows_subsystem = "x"] C On Windows, make a console or windows app.

��[crate_name = "x"] C Specify current crate name, e.g., when not using cargo .

��[crate_type = "bin"] C Specify current crate type (bin , lib , dylib , cdylib , …).

��[recursion_limit = "123"] C Set compile-time recursion limit for deref, macros, …

��[type_length_limit = "456"] C Limits maximum number of type substitutions.

Handlers On Explanation

��panic_handler] F Make some fn(&PanicInfo) �� ! app's panic handler.

��alloc_error_handler] F Make some fn(Layout) �� ! the allocation fail. handler.

��global_allocator] S Make static item impl. GlobalAlloc global allocator.

STD STD REF

STD REF

REF

🚧

REF🝖

? REF🝖

REF🝖

REF🝖

REF🝖

REF

🔗 🚧

STD REF

��code]

Attributes primarily governing emitted code:

https://doc.rust-lang.org/rustdoc/documentation-tests.html
https://doc.rust-lang.org/std/
https://doc.rust-lang.org/std/
https://doc.rust-lang.org/core/
https://doc.rust-lang.org/core/
https://doc.rust-lang.org/stable/reference/names/preludes.html#the-no_std-attribute
https://doc.rust-lang.org/stable/reference/names/preludes.html#the-no_std-attribute
https://doc.rust-lang.org/std/prelude/index.html
https://doc.rust-lang.org/std/prelude/index.html
https://doc.rust-lang.org/stable/reference/names/preludes.html#the-no_implicit_prelude-attribute
https://doc.rust-lang.org/stable/reference/names/preludes.html#the-no_implicit_prelude-attribute
https://doc.rust-lang.org/stable/reference/crates-and-source-files.html#the-no_main-attribute
https://doc.rust-lang.org/stable/reference/crates-and-source-files.html#the-no_main-attribute
https://doc.rust-lang.org/unstable-book/the-unstable-book.html
https://doc.rust-lang.org/stable/reference/runtime.html#the-windows_subsystem-attribute
https://doc.rust-lang.org/stable/reference/runtime.html#the-windows_subsystem-attribute
https://doc.rust-lang.org/stable/reference/crates-and-source-files.html#the-crate_name-attribute
https://doc.rust-lang.org/stable/reference/crates-and-source-files.html#the-crate_name-attribute
https://doc.rust-lang.org/stable/reference/linkage.html
https://doc.rust-lang.org/stable/reference/linkage.html
https://doc.rust-lang.org/stable/reference/attributes/limits.html#the-recursion_limit-attribute
https://doc.rust-lang.org/stable/reference/attributes/limits.html#the-recursion_limit-attribute
https://doc.rust-lang.org/stable/reference/attributes/limits.html#the-type_length_limit-attribute
https://doc.rust-lang.org/stable/reference/attributes/limits.html#the-type_length_limit-attribute
https://doc.rust-lang.org/stable/reference/runtime.html#the-panic_handler-attribute
https://doc.rust-lang.org/stable/reference/runtime.html#the-panic_handler-attribute
https://github.com/rust-lang/rust/issues/51540
https://github.com/rust-lang/rust/issues/51540
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html
https://doc.rust-lang.org/stable/reference/runtime.html#the-global_allocator-attribute
https://doc.rust-lang.org/stable/reference/runtime.html#the-global_allocator-attribute

45

Developer UX On Explanation

��non_exhaustive] T Future-proof struct or enum ; hint it may grow in future.

��path = "x.rs"] M Get module from non-standard file.

Codegen On Explanation

��inline] F Nicely suggest compiler should inline function at call sites.

��inline(always)] F Emphatically threaten compiler to inline call, or else.

��inline(never)] F Instruct compiler to feel sad if it still inlines the function.

��cold] F Hint that function probably isn't going to be called.

#
[target_feature(enable="x")]

F Enable CPU feature (e.g., avx2) for code of unsafe fn .

��track_caller] F Allows fn to find caller for better panic messages.

��repr(X)] T Use another representation instead of the default rust one:

 ��repr(C)] T
Use a C-compatible (f. FFI), predictable (f. transmute) layout.

 ��repr(C, u8)] enum Give enum discriminant the specified type.

 ��repr(transparent)] T Give single-element type same layout as contained field.

 ��repr(packed(1))] T Lower align. of struct and contained fields, mildly UB prone.

 ��repr(align(8))] T
Raise alignment of struct to given value, e.g., for SIMD types.

 Some representation modifiers can be combined, e.g., ��repr(C, packed(1))].

Linking On Explanation

��no_mangle] * Use item name directly as symbol name, instead of mangling.

��no_link] X Don't link extern crate when only wanting macros.

��link(name="x", kind="y")] X Native lib to link against when looking up symbol.

��link_name = "foo"] F Name of symbol to search for resolving extern fn .

��link_section = ".sample"] FS Section name of object file where item should be placed.

��export_name = "foo"] FS Export a fn or static under a different name.

��used] S Don't optimize away static variable despite it looking unused.

REF

REF

REF

REF

REF

REF

REF

STD REF

1 REF

REF

REF

REF

REF

REF

1

REF

REF

REF

REF

REF

REF

REF

��quality]

Attributes used by Rust tools to improve code quality:

Code Patterns On Explanation

��allow(X)] * Instruct rustc / clippy to ign. class X of possible issues.

��warn(X)] * … emit a warning, mixes well with clippy lints.

��deny(X)] * … fail compilation.

��forbid(X)] * … fail compilation and prevent subsequent allow overrides.

��deprecated = "msg"] * Let your users know you made a design mistake.

��must_use = "msg"] FTX Makes compiler check return value is processed by caller.

REF

1 🔥 REF

1 REF

1 REF

REF

🔥 REF

https://doc.rust-lang.org/stable/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://doc.rust-lang.org/stable/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://doc.rust-lang.org/stable/reference/items/modules.html#the-path-attribute
https://doc.rust-lang.org/stable/reference/items/modules.html#the-path-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-inline-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-cold-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-cold-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-target_feature-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-target_feature-attribute
https://doc.rust-lang.org/core/panic/struct.Location.html#method.caller
https://doc.rust-lang.org/core/panic/struct.Location.html#method.caller
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-track_caller-attribute
https://doc.rust-lang.org/stable/reference/attributes/codegen.html#the-track_caller-attribute
https://doc.rust-lang.org/stable/reference/type-layout.html#the-default-representation
https://doc.rust-lang.org/stable/reference/type-layout.html#the-default-representation
https://doc.rust-lang.org/stable/reference/type-layout.html#the-c-representation
https://doc.rust-lang.org/stable/reference/type-layout.html#the-c-representation
https://doc.rust-lang.org/stable/reference/type-layout.html#the-c-representation
https://doc.rust-lang.org/stable/reference/type-layout.html#the-c-representation
https://doc.rust-lang.org/stable/reference/type-layout.html#the-transparent-representation
https://doc.rust-lang.org/stable/reference/type-layout.html#the-transparent-representation
https://doc.rust-lang.org/stable/reference/type-layout.html#the-alignment-modifiers
https://doc.rust-lang.org/stable/reference/type-layout.html#the-alignment-modifiers
https://doc.rust-lang.org/stable/reference/type-layout.html#the-alignment-modifiers
https://doc.rust-lang.org/stable/reference/type-layout.html#the-alignment-modifiers
https://doc.rust-lang.org/stable/reference/abi.html#the-no_mangle-attribute
https://doc.rust-lang.org/stable/reference/abi.html#the-no_mangle-attribute
https://doc.rust-lang.org/stable/reference/items/extern-crates.html#the-no_link-attribute
https://doc.rust-lang.org/stable/reference/items/extern-crates.html#the-no_link-attribute
https://doc.rust-lang.org/stable/reference/items/external-blocks.html#the-link-attribute
https://doc.rust-lang.org/stable/reference/items/external-blocks.html#the-link-attribute
https://doc.rust-lang.org/stable/reference/items/external-blocks.html#the-link_name-attribute
https://doc.rust-lang.org/stable/reference/items/external-blocks.html#the-link_name-attribute
https://doc.rust-lang.org/stable/reference/abi.html#the-link_section-attribute
https://doc.rust-lang.org/stable/reference/abi.html#the-link_section-attribute
https://doc.rust-lang.org/stable/reference/abi.html#the-export_name-attribute
https://doc.rust-lang.org/stable/reference/abi.html#the-export_name-attribute
https://doc.rust-lang.org/stable/reference/abi.html#the-used-attribute
https://doc.rust-lang.org/stable/reference/abi.html#the-used-attribute
https://doc.rust-lang.org/stable/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/stable/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/stable/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/stable/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/stable/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/stable/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/stable/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/stable/reference/attributes/diagnostics.html#lint-check-attributes
https://doc.rust-lang.org/stable/reference/diagnostics.html#the-deprecated-attribute
https://doc.rust-lang.org/stable/reference/diagnostics.html#the-deprecated-attribute
https://doc.rust-lang.org/stable/reference/attributes/diagnostics.html#the-must_use-attribute
https://doc.rust-lang.org/stable/reference/attributes/diagnostics.html#the-must_use-attribute

46

 There is some debate which one is the best to ensure high quality crates. Actively maintained multi-dev crates probably benefit from more
aggressive deny or forbid lints; less-regularly updated ones probably more from conservative use of warn (as future compiler or clippy updates
may suddenly break otherwise working code with minor issues).

Tests On Explanation

��test] F Marks the function as a test, run with cargo test .

��ignore = "msg"] F Compiles but does not execute some ��test] for now.

��should_panic] F Test must panic!() to actually succeed.

��bench] F Mark function in bench/ as benchmark for cargo bench .

Formatting On Explanation

��rustfmt��skip] * Prevent cargo fmt from cleaning up item.

��[rustfmt��skip��macros(x)] CM … from cleaning up macro x .

��[rustfmt��skip��attributes(x)] CM … from cleaning up attribute x .

Documentation On Explanation

��doc = "Explanation"] * Same as adding a ��� doc comment.

��doc(alias = "other")] * Provide other name for search in docs.

��doc(hidden)] * Prevent item from showing up in docs.

��[doc(html_favicon_url = "")] C Sets the favicon for the docs.

��[doc(html_logo_url = "")] C The logo used in the docs.

��[doc(html_playground_url = "")] C Generates Run buttons and uses given service.

��[doc(html_root_url = "")] C Base URL for links to external crates.

��[doc(html_no_source)] C Prevents source from being included in docs.

1 💬

🔥 REF

REF

REF

🚧 REF

🔗

🔗

🔗

🔗

🔗

🔗

🔗

🔗

🔗

🔗

🔗

��macros]

Attributes related to the creation and use of macros:

Macros By Example On Explanation

��macro_export] ! Export macro_rules! as pub on crate level

��macro_use] MX Let macros persist past mod.; or import from extern crate .

Proc Macros On Explanation

��proc_macro] F Mark fn as function-like procedural m. callable as m!() .

��proc_macro_derive(Foo)] F Mark fn as derive macro which can ��derive(Foo)] .

��proc_macro_attribute] F Mark fn as attribute macro for new ��x] .

Derives On Explanation

��derive(X)] T Let some proc macro provide a goodish impl of trait X .

REF

REF

REF

REF

REF

🔥 REF

��cfg]

Attributes governing conditional compilation:

https://doc.rust-lang.org/stable/reference/attributes/testing.html#the-test-attribute
https://doc.rust-lang.org/stable/reference/attributes/testing.html#the-test-attribute
https://doc.rust-lang.org/stable/reference/attributes/testing.html#the-ignore-attribute
https://doc.rust-lang.org/stable/reference/attributes/testing.html#the-ignore-attribute
https://doc.rust-lang.org/stable/reference/attributes/testing.html#the-ignore-attribute
https://doc.rust-lang.org/stable/reference/attributes/testing.html#the-ignore-attribute
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://github.com/rust-lang/rustfmt
https://doc.rust-lang.org/rustdoc/the-doc-attribute.html
https://doc.rust-lang.org/rustdoc/the-doc-attribute.html
https://github.com/rust-lang/rust/issues/50146
https://github.com/rust-lang/rust/issues/50146
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#hidden
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#hidden
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_favicon_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_favicon_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_logo_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_logo_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_playground_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_playground_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_root_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_root_url
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_no_source
https://doc.rust-lang.org/rustdoc/write-documentation/the-doc-attribute.html#html_no_source
https://doc.rust-lang.org/stable/reference/macros-by-example.html#path-based-scope
https://doc.rust-lang.org/stable/reference/macros-by-example.html#path-based-scope
https://doc.rust-lang.org/stable/reference/macros-by-example.html#the-macro_use-attribute
https://doc.rust-lang.org/stable/reference/macros-by-example.html#the-macro_use-attribute
https://doc.rust-lang.org/stable/reference/procedural-macros.html#function-like-procedural-macros
https://doc.rust-lang.org/stable/reference/procedural-macros.html#function-like-procedural-macros
https://doc.rust-lang.org/stable/reference/procedural-macros.html#derive-macros
https://doc.rust-lang.org/stable/reference/procedural-macros.html#derive-macros
https://doc.rust-lang.org/stable/reference/procedural-macros.html#attribute-macros
https://doc.rust-lang.org/stable/reference/procedural-macros.html#attribute-macros
https://doc.rust-lang.org/stable/reference/
https://doc.rust-lang.org/stable/reference/

47

Config Attributes On Explanation

��cfg(X)] * Include item if configuration X holds.

��cfg(all(X, Y, Z))] * Include item if all options hold.

��cfg(any(X, Y, Z))] * Include item if at least one option holds.

��cfg(not(X))] * Include item if X does not hold.

��cfg_attr(X, foo = "msg")] * Apply ��foo = "msg"] if configuration X holds.

⚠ Note, options can generally be set multiple times, i.e., the same key can show up with multiple values. One
can expect ��cfg(target_feature = "avx")] and ��cfg(target_feature = "avx2")] to be true at the
same time.

Known Options On Explanation

��cfg(target_arch = "x86_64")] * The CPU architecture crate is compiled for.

��cfg(target_feature = "avx")] * Whether a particular class of instructions is avail.

��cfg(target_os = "macos")] * Operating system your code will run on.

��cfg(target_family = "unix")] * Family operating system belongs to.

��cfg(target_env = "msvc")] * How DLLs and functions are interf. with on OS.

��cfg(target_endian = "little")] * Main reason your new zero-cost prot. fails.

��cfg(target_pointer_width = "64")] * How many bits ptrs, usize and words have.

��cfg(target_vendor = "apple")] * Manufacturer of target.

��cfg(debug_assertions)] * Whether debug_assert!() & co. would panic.

��cfg(panic = "unwind")] * Whether unwind or abort will happen on panic.

��cfg(proc_macro)] * Whether crate compiled as proc macro.

��cfg(test)] * Whether compiled with cargo test .

��cfg(feature = "foo")] * When your crate was compiled with f. foo .

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

REF

?

REF

🔥 REF

🔥 REF

build.rs

Environment variables and outputs related to the pre-build script.

Input Environment Explanation

CARGO_FEATURE_X Environment variable set for each feature x activated.

 CARGO_FEATURE_SOMETHING If feature something were enabled.

 CARGO_FEATURE_SOME_FEATURE If f. some�feature were enabled; dash - converted to _ .

CARGO_CFG_X Exposes cfg's; joins mult. opts. by , and converts - to _ .

 CARGO_CFG_TARGET_OS=macos If target_os were set to macos .

 CARGO_CFG_TARGET_FEATURE=avx,avx2 If target_feature were set to avx and avx2 .

OUT_DIR Where output should be placed.

TARGET Target triple being compiled for.

HOST Host triple (running this build script).

PROFILE Can be debug or release .

🔗

https://doc.rust-lang.org/stable/reference/conditional-compilation.html#the-cfg-attribute
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#the-cfg-attribute
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#the-cfg_attr-attribute
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#the-cfg_attr-attribute
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_arch
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_arch
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_feature
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_feature
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_os
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_os
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_family
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_family
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_env
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_env
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_endian
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_endian
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_pointer_width
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_pointer_width
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_vendor
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#target_vendor
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#debug_assertions
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#debug_assertions
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#proc_macro
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#proc_macro
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#test
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#test
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/stable/reference/conditional-compilation.html#conditional-compilation
https://doc.rust-lang.org/cargo/reference/environment-variables.html
https://doc.rust-lang.org/cargo/reference/environment-variables.html

48

For the On column in attributes:
C means on crate level (usually given as ��[my_attr] in the top level file).
M means on modules.
F means on functions.
S means on static.
T means on types.
X means something special.
! means on macros.
* means on almost any item.

Working with Types

Types, Traits, Generics

Allowing users to bring their own types and avoid code duplication.

Available in build.rs via var()?. List not exhaustive.

Output String Explanation

cargo:rerun�if�changed=PATH (Only) run this build.rs again if PATH changed.

cargo:rerun�if�env�changed=VAR (Only) run this build.rs again if environment VAR changed.

cargo:rustc�link�lib=[KIND=]NAME Link native library as if via �l option.

cargo:rustc�link�search=[KIND=]PATH Search path for native library as if via -L option.

cargo:rustc�flags=FLAGS Add special flags to compiler.

cargo:rustc�cfg=KEY[="VALUE"] Emit given cfg option to be used for later compilation.

cargo:rustc�env=VAR=VALUE Emit var accessible via env!() in crate during compilation.

cargo:rustc�cdylib�link�arg=FLAG When building a cdylib , pass linker flag.

cargo:warning=MESSAGE Emit compiler warning.

Emitted from build.rs via println!(). List not exhaustive.

env��

🔗

?

Types & Traits

Types

Set of values with given semantics, layout, …

Type Values

u8 { 0 , 1 , …, 255 }

char { 'a', 'b', … '🦀' }

struct S(u8, char) { (0 , 'a'), … (255 , '🦀') }

Sample types and sample values.

Type Equivalence and Conversions

It may be obvious but u8 , &u8 , &mut u8 , are entirely different from each other
Any t: T only accepts values from exactly T , e.g.,

u8 String Device

u8 u8 u8

u8 u8

u8 &u8 &mut u8 [u8; 1] String

https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html

49

f(0_u8) can't be called with f(&0_u8) ,
f(&mut my_u8) can't be called with f(&my_u8) ,
f(0_u8) can't be called with f(0_i8) .

Yes, 0 �� 0 (in a mathematical sense) when it comes to types! In a language sense, the operation
��(0 , 0) just isn't defined to prevent happy little accidents.

Type Values

u8 { 0 , 1 , …, 255 }

u16 { 0 , 1 , …, 65_535 }

&u8 { 0�ffaa , 0�ffbb , … }

&mut u8 { 0�ffaa , 0�ffbb , … }

How values differ between types.

However, Rust might sometimes help to convert between types
casts manually convert values of types, 0_i8 as u8

coercions automatically convert types if safe , let x: &u8 = &mut 0_u8;

 Casts and coercions convert values from one set (e.g., u8) to another (e.g., u16), possibly adding CPU instructions to do so; and in such differ

from subtyping, which would imply type and subtype are part of the same set (e.g., u8 being subtype of u16 and 0_u8 being the same as 0_u16)
where such a conversion would be purely a compile time check. Rust does not use subtyping for regular types (and 0_u8 does differ from 0_u16)

but sort-of for lifetimes.

 Safety here is not just physical concept (e.g., &u8 can't be coerced to &u128), but also whether 'history has shown that such a conversion would
lead to programming errors'.

Implementations — impl S { }

impl Port {
 fn f() { … }
}

Types usually come with inherent implementations, e.g., impl Port {} , behavior related to type:
associated functions Port��new(80)
methods port.close()

What's considered related is more philosophical than technical, nothing (except good taste) would prevent a
u8��play_sound() from happening.

Traits — trait T { }

Traits …
are way to "abstract" behavior,
trait author declares semantically this trait means X,
other can implement ("subscribe to") that behavior for their type.

Think about trait as "membership list" for types:

u8 u16

u8 u8 u8

u16 u16 u16

&u8 &u8

&mut u8 &mut u8

1

↑ 2

1

🔗

2

u8

impl { … }

 String

impl { … }

 Port

impl { … }

REF

 ⌾ Copy ⌾ Clone ⌾ Sized ⌾ ShowHex

https://featherweightmusings.blogspot.com/2014/03/subtyping-and-coercion-in-rust.html
https://featherweightmusings.blogspot.com/2014/03/subtyping-and-coercion-in-rust.html
https://doc.rust-lang.org/stable/reference/items/implementations.html#inherent-implementations
https://doc.rust-lang.org/stable/reference/items/implementations.html#inherent-implementations

50

Copy Trait
Self

u8

u16

…

Clone Trait
Self

u8

String

…

Sized Trait
Self

char

Port

…

Traits as membership tables, Self refers to the type included.

Whoever is part of that membership list will adhere to behavior of list.
Traits can also include associated methods, functions, …

trait ShowHex {
 �� Must be implemented according to documentation.
 fn as_hex() �� String;

 �� Provided by trait author.
 fn print_hex() {}
}

trait Copy { }

Traits without methods often called marker traits.
Copy is example marker trait, meaning memory may be copied bitwise.

Some traits entirely outside explicit control
Sized provided by compiler for types with known size; either this is, or isn't

Implementing Traits for Types — impl T for S { }

impl ShowHex for Port { … }

Traits are implemented for types 'at some point'.
Implementation impl A for B add type B to the trait membership list:

ShowHex Trait
Self

Port

Visually, you can think of the type getting a "badge" for its membership:

⌾ Copy

⌾ Sized

51

Traits vs. Interfaces

Interfaces

In Java, Alice creates interface Eat .
When Bob authors Venison , he must decide if Venison implements Eat or not.
In other words, all membership must be exhaustively declared during type definition.
When using Venison , Santa can make use of behavior provided by Eat :

�� Santa imports `Venison` to create it, can `eat()` if he wants.
import food.Venison;

new Venison("rudolph").eat();

Traits

In Rust, Alice creates trait Eat .
Bob creates type Venison and decides not to implement Eat (he might not even know about Eat).
Someone later decides adding Eat to Venison would be a really good idea.
When using Venison Santa must import Eat separately:

�� Santa needs to import `Venison` to create it, and import `Eat` for trait method.
use Venison;
use Eat;

�� Ho ho ho
Venison��new("rudolph").eat();

 To prevent two persons from implementing Eat differently Rust limits that choice to either Alice or Bob; that is, an impl Eat for Venison may only

happen in the crate of Venison or in the crate of Eat. For details see coherence.

u8

impl { … }

 Device

impl { … }

 Port

impl { … }

� 🧔 Venison 🎅 venison.eat()

� 🧔 Venison � / 🧔 Venison

+

🎅 venison.eat()

*

food��
tasks��

*

?

Generics

Type Constructors — Vec��

⌾ Sized

⌾ Clone

⌾ Copy

⌾ Transport ⌾ Sized

⌾ Clone

⌾ ShowHex

⌾ Eat

⌾ Eat

⌾ Eat

⌾ Eat

52

Vec<u8> is type "vector of bytes"; Vec<char> is type "vector of chars", but what is Vec��?

Construct Values

Vec<u8> { [], [1], [1, 2, 3], … }

Vec<char> { [], ['a'], ['x', 'y', 'z'], … }

Vec�� -

Types vs type constructors.

Vec�� is no type, does not occupy memory, can't even be translated to code.
Vec�� is type constructor, a "template" or "recipe to create types"

allows 3 party to construct concrete type via parameter,
only then would this Vec<UserType> become real type itself.

Generic Parameters — <T>

Parameter for Vec�� often named T therefore Vec<T> .
T "variable name for type" for user to plug in something specific, Vec<f32> , S<u8> , …

Type Constructor Produces Family

struct Vec<T> {} Vec<u8> , Vec<f32> , Vec<Vec<u8�� , …

[T; 128] [u8; 128] , [char; 128] , [Port; 128] …

&T &u8 , &u16 , &str , …

Type vs type constructors.

�� S�� is type constructor with parameter T; user can supply any concrete type for T.
struct S<T> {
 x: T
}

�� Within 'concrete' code an existing type must be given for T.
fn f() {
 let x: S<f32> = S��new(0_f32);
}

Const Generics — [T; N] and S<const N� usize>

Some type constructors not only accept specific type, but also specific constant.
[T; n] constructs array type holding T type n times.
For custom types declared as MyArray<T, const N� usize> .

Type Constructor Produces Family

[u8; N] [u8; 0] , [u8; 1] , [u8; 2] , …

Vec<u8> Vec<char>

Vec��

rd

Vec<T> [T; 128] &T &mut T S<T>

[T; n] S<const N>

53

Type Constructor Produces Family

struct S<const N� usize> {} S<1> , S<6> , S<123> , …

Type constructors based on constant.

let x: [u8; 4]; �� "array of 4 bytes"
let y: [f32; 16]; �� "array of 16 floats"

�� `MyArray` is type constructor requiring concrete type `T� and
�� concrete usize `N� to construct specif�c type.
struct MyArray<T, const N� usize> {
 data: [T; N],
}

Bounds (Simple) — where T� X

If T can be any type, how can we reason about (write code) for such a Num<T>?
Parameter bounds:

limit what types (trait bound) or values (const bound) allowed,
we now can make use of these limits!

Trait bounds act as "membership check":

�� Type can only be constructed for some `T� if that
�� T is part of `Absolute` membership list.
struct Num<T> where T� Absolute {
 …
}

Absolute Trait
Self

u8

u16

…

We add bounds to the struct here. In practice it's nicer add bounds to the respective impl blocks instead, see later this section.

Bounds (Compound) — where T� X + Y

struct S<T>
where
 T� Absolute + Dim + Mul + DirName + TwoD
{ … }

Long trait bounds can look intimidating.
In practice, each + X addition to a bound merely cuts down space of eligible types.

Implementing Families — impl��

🧔 Num<T> → 🎅 Num<u8> Num<f32> Num<Cmplx> u8 Port

⌾ Clone

⌾ ShowHex

?

 Cmplx u8

⌾ Absolute

⌾ Dim

⌾ Mul

f32

⌾ Absolute

⌾ Mul

char Car

⌾ DirName

⌾ Absolute

⌾ Dim

⌾ Mul

⌾ Absolute

⌾ Dim

⌾ Mul

⌾ DirName

⌾ TwoD

54

When we write:

impl<T> S<T> where T� Absolute + Dim + Mul {
 fn f(&self, x: T) { … };
}

It can be read as:

here is an implementation recipe for any type T (the impl <T> part),
where that type must be member of the Absolute + Dim + Mul traits,
you may add an implementation block to the type family S�� ,
containing the methods …

You can think of such impl<T> … {} code as abstractly implementing a family of behaviors. Most notably,
they allow 3 parties to transparently materialize implementations similarly to how type constructors materialize
types:

�� If compiler encounters this, it will
�� - check `0` and `x` fulf�ll the membership requirements of `T�
�� - create two new version of `f`, one for `char`, another one for `u32`.
�� - based on "family implementation" provided
s.f(0_u32);
s.f('x');

Blanket Implementations — impl<T> X for T { … }

Can also write "family implementations" so they apply trait to many types:

�� Also implements Serialize for any type if that type already implements ToHex
impl<T> Serialize for T where T� ToHex { … }

These are called blanket implementations.

ToHex

Self

Port

Device

…

→ Whatever
was in left table,
may be added to

right table,
based on the

following recipe (
impl) →

Serialize Trait

Self

u8

Port

…

They can be neat way to give foreign types functionality in a modular way if they just implement another interface.

REF

rd

Advanced Concepts🝖

Trait Parameters — Trait<In> { type Out; }

Notice how some traits can be "attached" multiple times, but others just once?

https://doc.rust-lang.org/stable/reference/items/implementations.html#generic-implementations
https://doc.rust-lang.org/stable/reference/items/implementations.html#generic-implementations

55

Why is that?

Traits themselves can be generic over two kinds of parameters:
trait From<I> {}

trait Deref { type O; }

Remember we said traits are "membership lists" for types and called the list Self?
Turns out, parameters I (for input) and O (for output) are just more columns to that trait's list:

impl From<u8> for u16 {}
impl From<u16> for u32 {}
impl Deref for Port { type O = u8; }
impl Deref for String { type O = str; }

From
Self I

u16 u8

u32 u16

…

Deref
Self O

Port u8

String str

…

Input and output parameters.

Now here's the twist,

any output O parameters must be uniquely determined by input parameters I ,
(in the same way as a relation X Y would represent a function),
Self counts as an input.

A more complex example:

trait Complex<I1, I2> {
 type O1;
 type O2;
}

this creates a relation of types named Complex ,
with 3 inputs (Self is always one) and 2 outputs, and it holds (Self, I1, I2) �� (O1, O2)

Complex
Self [I] I1 I2 O1 O2

Player u8 char f32 f32

EvilMonster u16 str u8 u8

EvilMonster u16 String u8 u8

NiceMonster u16 String u8 u8

NiceMonster u16 String u8 u16

Various trait implementations. The last one is not valid as (NiceMonster, u16, String) has
already uniquely determined the outputs.

Port Port

🛑

type u8;

⌾ From<u8>

⌾ From<u16>

⌾ Deref

56

Trait Authoring Considerations (Abstract)

Parameter choice (input vs. output) also determines who may be allowed to add members:
I parameters allow "familes of implementations" be forwarded to user (Santa),
O parameters must be determined by trait implementor (Alice or Bob).

trait A<I> { }
trait B { type O; }

�� Implementor adds (X, u32) to A.
impl A<u32> for X { }

�� Implementor adds family impl. (X, …) to A, user can materialze.
impl<T> A<T> for Y { }

�� Implementor must decide specif�c entry (X, O) added to B.
impl B for X { type O = u32; }

A
Self I

X u32

Y …

Santa may add more members by
providing his own type for T.

B
Self O

Player String

X u32

For given set of inputs (here Self),

implementor must pre-select O.

Trait Authoring Considerations (Example)

Choice of parameters goes along with purpose trait has to fill.

No Additional Parameters

trait Query {
 fn search(&self, needle: &str);
}

impl Query for PostgreSQL { … }
impl Query for Sled { … }

postgres.search("SELECT …");

� 🧔 Car � / 🧔 Car 🎅 car.a(0_u8)
car.a(0_f32)

� 🧔 Car � / 🧔 Car 🎅 car.b(0_u8)
car.b(0_f32)

vs. vs. vs.

type O;

T = u8;

type O; type O;

⌾ A<I>

⌾ A<I>

⌾ B

⌾ B

⌾ Query ⌾ Query<I> ⌾ Query ⌾ Query<I>

57

Trait author assumes:

neither implementor nor user need to customize API.

Input Parameters

trait Query<I> {
 fn search(&self, needle: I);
}

impl Query<&str> for PostgreSQL { … }
impl Query<String> for PostgreSQL { … }
impl<T> Query<T> for Sled where T� ToU8Slice { … }

postgres.search("SELECT …");
postgres.search(input.to_string());
sled.search(f�le);

Trait author assumes:

implementor would customize API in multiple ways for same Self type,
users may want ability to decide for which I -types behavior should be possible.

Output Parameters

trait Query {
 type O;
 fn search(&self, needle: Self��O);
}

impl Query for PostgreSQL { type O = String; …}
impl Query for Sled { type O = Vec<u8>; … }

postgres.search("SELECT …".to_string());
sled.search(vec![0, 1, 2, 4]);

Trait author assumes:

� → 🧔 PostgreSQL Sled

� → 🧔 PostgreSQL Sled

 where T is
ToU8Slice .

↲

� → 🧔 PostgreSQL Sled
type O;

O = String; O = Vec<u8>;

⌾ Query

⌾ Query ⌾ Query

⌾ Query<I>

⌾ Query<&str>

⌾ Query<String>

⌾ Query<T>

⌾ Query

⌾ Query ⌾ Query

58

implementor would customize API for Self type (but in only one way),
users do not need, or should not have, ability to influence customization for specific Self .

As you can see here, the term input or output does not (necessarily) have anything to do with whether I or O

are inputs or outputs to an actual function!

Multiple In- and Output Parameters

trait Query<I> {
 type O;
 fn search(&self, needle: I) �� Self��O;
}

impl Query<&str> for PostgreSQL { type O = String; … }
impl Query<CString> for PostgreSQL { type O = CString; … }
impl<T> Query<T> for Sled where T� ToU8Slice { type O = Vec<u8>; … }

postgres.search("SELECT …").to_uppercase();
sled.search(&[1, 2, 3, 4]).pop();

Like examples above, in particular trait author assumes:

users may want ability to decide for which I -types ability should be possible,
for given inputs, implementor should determine resulting output type.

Dynamic / Zero Sized Types

A type T is Sized if at compile time it is known how many bytes it occupies, u8 and &[u8] are, [u8] isn't.
Being Sized means impl Sized for T {} holds. Happens automatically and cannot be user impl'ed.
Types not Sized are called dynamically sized types (DSTs), sometimes unsized.
Types without data are called zero sized types (ZSTs), do not occupy space.

Example Explanation

struct A { x: u8 } Type A is sized, i.e., impl Sized for A holds, this is a 'regular' type.

struct B { x: [u8] } Since [u8] is a DST, B in turn becomes DST, i.e., does not impl Sized .

struct C<T> { x: T }
Type params have implicit T� Sized bound, e.g., C<A> is valid, C is
not.

struct D<T� ?Sized> { x: T
} Using ?Sized allows opt-out of that bound, i.e., D is also valid.

struct E; Type E is zero-sized (and also sized) and will not consume memory.

� → 🧔 PostgreSQL Sled

 where T is
ToU8Slice .

↲

MostTypes

Normal types.

vs. Z

Zero sized.

vs. str

Dynamically sized.

[u8] dyn Trait …

STD

BK NOM REF

NOM

REF

type O;

O = String;

O = CString;

O = Vec<u8>;

⌾ Query<I>

⌾ Query<&str>

⌾ Query<CString>

⌾ Query<T>

⌾ Sized ⌾ Sized ⌾ Sized ⌾ Sized ⌾ Sized ⌾ Sized

https://doc.rust-lang.org/std/marker/trait.Sized.html
https://doc.rust-lang.org/std/marker/trait.Sized.html
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait
https://doc.rust-lang.org/book/ch19-04-advanced-types.html#dynamically-sized-types-and-the-sized-trait
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#dynamically-sized-types-dsts
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#dynamically-sized-types-dsts
https://doc.rust-lang.org/stable/reference/dynamically-sized-types.html#dynamically-sized-types
https://doc.rust-lang.org/stable/reference/dynamically-sized-types.html#dynamically-sized-types
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/nightly/nomicon/exotic-sizes.html#zero-sized-types-zsts
https://doc.rust-lang.org/stable/reference/trait-bounds.html#sized
https://doc.rust-lang.org/stable/reference/trait-bounds.html#sized

59

Examples expand by clicking.

Foreign Types and Traits

Example Explanation

trait F { fn f(&self); }
Traits do not have an implicit Sized bound, i.e., impl F for B {} is
valid.

 trait F� Sized {} Traits can however opt into Sized via supertraits.

trait G { fn g(self); } For Self -like params DST impl may still fail as params can't go on stack.

?Sized

struct S<T> { … }

T can be any concrete type.
However, there exists invisible default bound T� Sized , so S<str> is not possible out of box.
Instead we have to add T : ?Sized to opt-out of that bound:

struct S<T> where T� ?Sized { … }

Generics and Lifetimes — <'a>

Lifetimes act as type parameters:
user must provide specific 'a to instantiate type (compiler will help within methods),
S<'p> and S<'q> are different types, just like Vec<f32> and Vec<u8> are
meaning you can't just assign value of type S<'a> to variable expecting S<'b> (exception: subtype
relationship for lifetimes, i.e., 'a outlives 'b).

'static is only globally available type of the lifetimes kind.

�� `'a is free parameter here (user can pass any specif�c lifetime)
struct S<'a> {
 x: &'a u32
}

�� In non�generic code, 'static is the only nameable lifetime we can explicitly put in here.
let a: S<'static>;

�� Alternatively, in non�generic code we can (often must) omit 'a and have Rust determine
�� the right value for 'a automatically.
let b: S;

 There are subtle differences, for example you can create an explicit instance 0 of a type u32, but with the exception of 'static you can't really

create a lifetime, e.g., "lines 80 - 100", the compiler will do that for you.

↑

S<T> → S<u8> S<char> S<str>

S<T> → S<u8> S<char> S<str>

S<'a> &'a f32 &'a mut u8

*

S<'a> → S<'auto> S<'static>

*

🔗

https://medium.com/nearprotocol/understanding-rust-lifetimes-e813bcd405fa
https://medium.com/nearprotocol/understanding-rust-lifetimes-e813bcd405fa

60

A visual overview of types and traits in your crate and upstream.

Examples of traits and types, and which traits you can implement for which type.

Type Conversions

How to get B when you have A?

Items defined in upstream crate

Your crat

u8

u16

f32

bool

char

Primitive Types

File

String

Builder

Composite Types

Vec<T>Vec<T>Vec<T>

&'a T&'a T&'a T

&mut 'a T&mut 'a T&mut 'a T

[T; n][T; n][T; n]

Type Constructors

Vec<T>Vec<T>f<T>() {}

drop() {}

Functions Other

PI

dbg!

Traits

Device

Foreign trait impl.
for local type.

Local trait impl. for
foreign type.

String

 Illegal, foreign
trait for f. type.

String

🛑

Exception: Legal if
used type local.

String

Port

Mult. impl. of trait
with differing IN
params.

Container

 Illegal impl. of
trait with differing
OUT params.

🛑

TTT

Blanket impl. of
trait for any type.

Intro

fn f(x: A) �� B {
 �� How can you obtain B from A?
}

Method Explanation

Identity Trivial case, B is exactly A .

Computation Create and manipulate instance of B by writing code transforming data.

Casts On-demand conversion between types where caution is advised.

Coercions Automatic conversion within 'weakening ruleset'.

Subtyping Automatic conversion within 'same-layout-different-lifetimes ruleset'.

1

1

type Tgt;

Tgt = u8;

Tgt = f32;

⌾ Copy

⌾ Deref

⌾ From<T>⌾ From<T>⌾ From<T>

⌾ Serialize

⌾ Transport

⌾ ShowHex

⌾ From<u8> ⌾ Serialize ⌾ From<u8>

⌾ From<Port>

⌾ From<u8>

⌾ From<u16>

⌾ Deref

⌾ Deref

⌾ ShowHex

61

 While both convert A to B, coercions generally link to an unrelated B (a type "one could reasonably expect to have different methods"), while
subtyping links to a B differing only in lifetimes.

1

Computation (Traits)

fn f(x: A) �� B {
 x.into()
}

Bread and butter way to get B from A . Some traits provide canonical, user-computable type relations:

Trait Example Trait implies …

impl From<A> for B {} a.into() Obvious, always-valid relation.

impl TryFrom<A> for B {} a.try_into()? Obvious, sometimes-valid relation.

impl Deref for A {} �a A is smart pointer carrying B ; also enables coercions.

impl AsRef for A {} a.as_ref() A can be viewed as B .

impl AsMut for A {} a.as_mut() A can be mutably viewed as B .

impl Borrow for A {} a.borrow() A has borrowed analog B (behaving same under Eq , …).

impl ToOwned for A { … } a.to_owned() A has owned analog B .

Casts

fn f(x: A) �� B {
 x as B
}

Convert types with keyword as if conversion relatively obvious but might cause issues.

A B Example Explanation

Pointer Pointer device_ptr as �const u8 If *A , *B are Sized .

Pointer Integer device_ptr as usize

Integer Pointer my_usize as �const Device

Number Number my_u8 as u16 Often surprising behavior.

enum w/o fields Integer E��A as u8

bool Integer true as u8

char Integer 'A' as u8

&[T; N] �const T my_ref as �const u8

fn(…) Pointer f as �const u8 If Pointer is Sized .

fn(…) Integer f as usize

Where Pointer , Integer , Number are just used for brevity and actually mean:

Pointer any �const T or �mut T ;
Integer any countable u8 … i128 ;

NOM

↑

https://doc.rust-lang.org/nightly/nomicon/casts.html
https://doc.rust-lang.org/nightly/nomicon/casts.html

62

Number any Integer , f32 , f64 .

Opinion — Casts, esp. Number - Number , can easily go wrong. If you are concerned with correctness,

consider more explicit methods instead.

💬

Coercions

fn f(x: A) �� B {
 x
}

Automatically weaken type A to B ; types can be substantially different.

A B Explanation

&mut T &T Pointer weakening.

&mut T �mut T -

&T �const T -

�mut T �const T -

&T &U Deref, if impl Deref<Target=U> for T .

T U Unsizing, if impl CoerceUnsized<U> for T .

T V Transitivity, if T coerces to U and U to V .

|x| x + x fn(u8) �� u8 Non-capturing closure, to equivalent fn pointer.

 Substantially meaning one can regularly expect a coercion result B to be an entirely different type (i.e., have

entirely different methods) than the original type A .

 Does not quite work in example above as unsized can't be on stack; imagine f(x: &A) �� &B instead. Unsizing
works by default for:

[T; n] to [T]
T to dyn Trait if impl Trait for T {} .
Foo<…, T, …> to Foo<…, U, …> under arcane circumstances.

1 NOM

2 🚧

1

2

🔗

Subtyping🝖

fn f(x: A) �� B {
 x
}

Automatically converts A to B for types only differing in lifetimes - subtyping examples:

A B Explanation

&'static u8 &'a u8 Valid, forever-pointer is also transient-pointer.

&'a u8 &'static u8 Invalid, transient should not be forever.

NOM

(subtype) (supertype)

🛑

https://doc.rust-lang.org/nightly/nomicon/coercions.html
https://doc.rust-lang.org/nightly/nomicon/coercions.html
https://doc.rust-lang.org/nomicon/coercions.html
https://doc.rust-lang.org/nomicon/coercions.html
https://doc.rust-lang.org/nightly/nomicon/subtyping.html
https://doc.rust-lang.org/nightly/nomicon/subtyping.html

63

A B Explanation

&'a &'b u8 &'a &'b u8
Valid, same thing. But now things get interesting. Read
on.

&'a &'static u8 &'a &'b u8 Valid, &'static u8 is also &'b u8 ; covariant inside & .

&'a mut &'static
u8

&'a mut &'b u8 Invalid and surprising; invariant inside &mut .

Box<&'static u8> Box<&'a u8> Valid, Box with forever is also box with transient; covariant.

Box<&'a u8>
Box<&'static
u8> Invalid, Box with transient may not be with forever.

Box<&'a mut u8> Box<&'a u8> Invalid, see table below, &mut u8 never was a &u8 .

Cell<&'static u8> Cell<&'a u8> Invalid, Cell are never something else; invariant.

fn(&'static u8) fn(&'a u8) If fn needs forever it may choke on transients; contravar.

fn(&'a u8) fn(&'static u8) But sth. that eats transients can be(!) sth. that eats forevers.

for<'r> fn(&'r u8) fn(&'a u8)
Higher-ranked type for<'r> fn(&'r u8) is also
fn(&'a u8).

In contrast, these are not examples of subtyping:

A B Explanation

u16 u8 Obviously invalid; u16 should never automatically be u8 .

u8 u16 Invalid by design; types w. different data still never subtype even if they could.

&'a mut u8 &'a u8 Trojan horse, not subtyping; but coercion (still works, just not subtyping).

(subtype) (supertype)

🛑

🛑

🛑 ⚡

🛑

🛑

🛑

🛑

🛑

🛑

Variance🝖

fn f(x: A) �� B {
 x
}

Automatically converts A to B for types only differing in lifetimes - subtyping variance rules:

A longer lifetime 'a that outlives a shorter 'b is a subtype of 'b .
Implies 'static is subtype of all other lifetimes 'a .
Whether types with parameters (e.g., &'a T) are subtypes of each other the following variance table is used:

Construct 'a T U

&'a T covariant covariant

&'a mut T covariant invariant

Box<T> covariant

Cell<T> invariant

fn(T) �� U contravariant covariant

�const T covariant

�mut T invariant

Covariant means if A is subtype of B, then T[A] is subtype of T[B].
Contravariant means if A is subtype of B, then T[B] is subtype of T[A].

NOM

1

https://doc.rust-lang.org/nightly/nomicon/subtyping.html
https://doc.rust-lang.org/nightly/nomicon/subtyping.html

64

Coding Guides

Idiomatic Rust

If you are used to Java or C, consider these.

Idiom Code

Think in Expressions y = if x { a } else { b };

y = loop { break 5 };

fn f() �� u32 { 0 }

Think in Iterators (1��10).map(f).collect()

names.iter().f�lter(|x| x.starts_with("A"))

Test Absence with ? y = try_something()?;

get_option()��run()?

Use Strong Types enum E { Invalid, Valid { … } } over ERROR_INVALID = -1

enum E { Visible, Hidden } over visible: bool

struct Charge(f32) over f32

Illegal State: Impossible my_lock.write().unwrap().guaranteed_at_compile_time_to_be_locked = 10;

scope(|s| { �� Threads can't exist longer than scope() �� });

Provide Builders Car��new("Model T").hp(20).build();

Don't Panic Panics are not exceptions, they suggest immediate process abortion!

Only panic on programming error; use Option<T> or Result<T,E> otherwise.

If clearly user requested, e.g., calling obtain() vs. try_obtain() , panic ok too.

Generics in Moderation A simple <T� Bound> (e.g., AsRef<Path>) can make your APIs nicer to use.

Complex bounds make it impossible to follow. If in doubt don't be creative with g.

Split Implementations Generics like Point<T> can have separate impl per T for some specialization.

impl<T> Point<T> { �� Add common methods here �� }

impl Point<f32> { �� Add methods only relevant for Point<f32> �� }

Unsafe Avoid unsafe {} , often safer, faster solution without it.

Implement Traits ��derive(Debug, Copy, …)] and custom impl where needed.

Tooling Run clippy regularly to significantly improve your code quality.

Format your code with rustfmt for consistency.

Add unit tests (��test]) to ensure your code works.

Add doc tests (��� f() ���) to ensure docs match code.

Documentation Annotate your APIs with doc comments that can show up on docs.rs.

Don't forget to include a summary sentence and the Examples heading.

If applicable: Panics, Errors, Safety, Abort and Undefined Behavior.

Invariant means even if A is subtype of B, neither T[A] nor T[B] will be subtype of the other.

 Compounds like struct S<T> {} obtain variance through their used fields, usually becoming invariant if multiple variances are mixed.

💡 In other words, 'regular' types are never subtypes of each other (e.g., u8 is not subtype of u16), and a
Box<u32> would never be sub- or supertype of anything. However, generally a Box<A> , can be subtype of
Box (via covariance) if A is a subtype of B , which can only happen if A and B are 'sort of the same type that

only differed in lifetimes', e.g., A being &'static u32 and B being &'a u32 .

1

1

thread��

STD STD

↓

🔥

🔥

BK

BK my_api��

https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/option/enum.Option.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rustfmt
https://doc.rust-lang.org/book/ch11-01-writing-tests.html
https://doc.rust-lang.org/book/ch11-01-writing-tests.html
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html
https://doc.rust-lang.org/book/ch14-02-publishing-to-crates-io.html
https://docs.rs/

65

 In most cases you should prefer ? over .unwrap(). In the case of locks however the returned PoisonError signifies a panic in another thread, so unwrapping it (thus propagating the
panic) is often the better idea.

🔥 We highly recommend you also follow the API Guidelines (Checklist) for any shared project! 🔥

Performance Tips

"My code is slow" sometimes comes up when porting microbenchmarks to Rust, or after profiling.

Rating Name Description

🚀🍼 Release Mode Always do cargo build ��release for massive speed boost.

🍼 ⚠ Target Native CPU Add rustflags = ["-Ctarget�cpu=native"] to conf�g.toml .

🍼⚖ Codegen Units Codegen units 1 may yield faster code, slower compile.

🍼 Reserve Capacity Pre-allocation of collections reduces allocation pressure.

🍼 Recycle Collections Calling x.clear() and reusing x prevents allocations.

🍼 Append to Strings Using write!(&mut s, "{}") can prevent extra allocation.

Bump Allocations Cheaply gets temporary, dynamic memory, esp. in hot loops.

🍼⚖ Replace Allocator On some platforms ext. allocator (e.g., mimalloc) faster.

Batch APIs Design APIs to handle multiple similar elements at once, e.g., slices.

⚖ SoA / AoSoA Beyond that consider struct of arrays (SoA) and similar.

🚀 ⚖ SIMD Inside (math heavy) batch APIs using SIMD can give 2x - 8x boost.

Reduce Data Size Small types (e.g, u8 vs u32 , niches) and data have better cache use.

Keep Data Nearby Storing often-used data nearby can improve memory access times.

Pass by Size Small (2-3 words) structs best passed by value, larger by reference.

⚖ Async-Await If parallel waiting happens a lot (e.g., server I/O) async good idea.

Threading Threads allow you to perform parallel work on mult. items at once.

🚀 ... in app Often good for apps, as lower wait times means better UX.

🚀 ⚖ ... inside libs Opaque t. use inside lib often not good idea, can be too opinionated.

🚀 ... for lib callers However, allowing your user to process you in parallel excellent idea.

🍼 Buffered I/O Raw File I/O highly inefficient w/o buffering.

🍼 ⚠ Faster Hasher Default HashMap hasher DoS attack-resilient but slow.

🍼 ⚠ Faster RNG If you use a crypto RNG consider swapping for non-crypto.

⚖ Avoid Trait Objects T.O. reduce code size, but increase memory indirection.

⚖ Defer Drop Dropping heavy objects in dump-thread can free up current one.

🍼 ⚠ Unchecked APIs If you are 100% confident, unsafe { unchecked_ } skips checks.

Entries marked 🚀 often come with a massive (> 2x) performance boost, 🍼 are easy to implement even after-the-fact, ⚖ might have costly side effects (e.g., memory, complexity), ⚠

have special risks (e.g., security, correctness).

Profiling Tips

Profilers are indispensable to identify hot spots in code. For the best experience add this to your Cargo.toml :

[prof�le.release]
debug = true

Then do a cargo build ��release and run the result with Superluminal (Windows) or Instruments (macOS). That said, there are many

performance opportunities profilers won't find, but that need to be designed in.

1

BK 🔥

🔗 ↑

🔗

STD

STD

STD

🔗

🔗 🔗

🔗

STD 🚧

?

🔗

🔗

🔗

STD

STD 🔥

🔗 STD

🔗

🔗

STD

💬

https://doc.rust-lang.org/stable/std/sync/struct.PoisonError.html
https://doc.rust-lang.org/stable/std/sync/struct.PoisonError.html
https://doc.rust-lang.org/stable/std/sync/struct.PoisonError.html
https://rust-lang.github.io/api-guidelines/
https://rust-lang.github.io/api-guidelines/checklist.html
https://doc.rust-lang.org/book/ch01-03-hello-cargo.html
https://doc.rust-lang.org/book/ch01-03-hello-cargo.html
https://doc.rust-lang.org/rustc/codegen-options/index.html#target-cpu
https://doc.rust-lang.org/rustc/codegen-options/index.html#target-cpu
https://doc.rust-lang.org/rustc/codegen-options/index.html#codegen-units
https://doc.rust-lang.org/rustc/codegen-options/index.html#codegen-units
https://doc.rust-lang.org/std/?search=with_capacity
https://doc.rust-lang.org/std/?search=with_capacity
https://doc.rust-lang.org/std/index.html?search=clear
https://doc.rust-lang.org/std/index.html?search=clear
https://doc.rust-lang.org/std/macro.write.html
https://doc.rust-lang.org/std/macro.write.html
https://docs.rs/bumpalo/latest/bumpalo/
https://docs.rs/bumpalo/latest/bumpalo/
https://old.reddit.com/r/rust/comments/y2yr5i/rust_mimalloc_v0130_has_just_been_released/is5rqfr/
https://old.reddit.com/r/rust/comments/y2yr5i/rust_mimalloc_v0130_has_just_been_released/is5rqfr/
https://crates.io/crates/mimalloc
https://crates.io/crates/mimalloc
https://www.rustsim.org/blog/2020/03/23/simd-aosoa-in-nalgebra/
https://www.rustsim.org/blog/2020/03/23/simd-aosoa-in-nalgebra/
https://doc.rust-lang.org/std/simd/index.html
https://doc.rust-lang.org/std/simd/index.html
https://en.wikipedia.org/wiki/Data-oriented_design
https://en.wikipedia.org/wiki/Data-oriented_design
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#reason-45
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#reason-45
https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html
https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html
https://doc.rust-lang.org/std/thread/index.html
https://doc.rust-lang.org/std/thread/index.html
https://doc.rust-lang.org/std/io/index.html#bufreader-and-bufwriter
https://doc.rust-lang.org/std/io/index.html#bufreader-and-bufwriter
https://lib.rs/crates/seahash
https://lib.rs/crates/seahash
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://stackoverflow.com/questions/28621980/what-are-the-actual-runtime-performance-costs-of-dynamic-dispatch
https://stackoverflow.com/questions/28621980/what-are-the-actual-runtime-performance-costs-of-dynamic-dispatch
https://abrams.cc/rust-dropping-things-in-another-thread
https://abrams.cc/rust-dropping-things-in-another-thread
https://doc.rust-lang.org/std/?search=unchecked
https://doc.rust-lang.org/std/?search=unchecked
https://superluminal.eu/rust/
https://en.wikipedia.org/wiki/Instruments_%28software%29

66

Async-Await 101

If you are familiar with async / await in C# or TypeScript, here are some things to keep in mind:

Basics

Construct Explanation

async Anything declared async always returns an impl Future<Output=_> .

 async fn f() {} Function f returns an impl Future<Output=()> .

 async fn f() �� S {} Function f returns an impl Future<Output=S> .

 async { x } Transforms { x } into an impl Future<Output=X> .

let sm = f(); Calling f() that is async will not execute f , but produce state machine sm .

 sm = async { g() }; Likewise, does not execute the { g() } block; produces state machine.

runtime.block_on(sm); Outside an async {} , schedules sm to actually run. Would execute g() .

sm.await Inside an async {} , run sm until complete. Yield to runtime if sm not ready.

 Technically async transforms following code into anonymous, compiler-generated state machine type; f() instantiates that machine.
 The state machine always impl Future, possibly Send & co, depending on types used inside async.

 State machine driven by worker thread invoking Future��poll() via runtime directly, or parent .await indirectly.
 Rust doesn't come with runtime, need external crate instead, e.g., tokio. Also, more helpers in futures crate.

STD

1 2

3 4

1

2

3

4

Execution Flow

At each x.await , state machine passes control to subordinate state machine x . At some point a low-level state
machine invoked via .await might not be ready. In that the case worker thread returns all the way up to runtime so
it can drive another Future. Some time later the runtime:

might resume execution. It usually does, unless sm / Future dropped.
might resume with the previous worker or another worker thread (depends on runtime).

Simplified diagram for code written inside an async block :

 consecutive_code(); consecutive_code(); consecutive_code();
START ��������������������� x.await ��������������������� y.await ���������������������
 READY
�� ^ ^ ^ Future<Output=X> ready -
^
�� Invoked via runtime | |
�� or an external .await | This might resume on another thread (next best
available),
�� | or NOT AT ALL if Future was dropped.
�� |
�� Execute `x`. If ready: just continue execution; if not, return
�� this thread to runtime.

Caveats 🛑

With the execution flow in mind, some considerations when writing code inside an async construct:

https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/future/trait.Future.html
https://crates.io/crates/tokio
https://github.com/rust-lang-nursery/futures-rs

67

Closures in APIs

There is a subtrait relationship Fn : FnMut : FnOnce . That means a closure that implements Fn also implements FnMut and FnOnce . Likewise a

closure that implements FnMut also implements FnOnce .

From a call site perspective that means:

Signature Function g can call … Function g accepts …

g<F� FnOnce()>(f: F) … f() at most once. Fn , FnMut , FnOnce

g<F� FnMut()>(mut f: F) … f() multiple times. Fn , FnMut

g<F� Fn()>(f: F) … f() multiple times. Fn

Notice how asking for a Fn closure as a function is most restrictive for the caller; but having a Fn closure as a caller is most compatible with any function.

From the perspective of someone defining a closure:

Closure Implements Comment

�� { moved_s; } FnOnce Caller must give up ownership of moved_s .

�� { &mut s; } FnOnce , FnMut Allows g() to change caller's local state s .

�� { &s; } FnOnce , FnMut , Fn May not mutate state; but can share and reuse s .

 Rust prefers capturing by reference (resulting in the most "compatible" Fn closures from a caller perspective), but can be forced to capture its

environment by copy or move via the move �� {} syntax.

That gives the following advantages and disadvantages:

Requiring Advantage Disadvantage

F� FnOnce Easy to satisfy as caller. Single use only, g() may call f() just once.

F� FnMut Allows g() to change caller state. Caller may not reuse captures during g() .

F� Fn Many can exist at same time. Hardest to produce for caller.

Unsafe, Unsound, Undefined

Unsafe leads to unsound. Unsound leads to undefined. Undefined leads to the dark side of the force.

Constructs Explanation

sleep_or_block(); Definitely bad , never halt current thread, clogs executor.

set_TL(a); x.await; TL(); Definitely bad , await may return from other thread, thread local invalid.

s.no(); x.await; s.go(); Maybe bad , await will not return if Future dropped while waiting.

Rc��new(); x.await; rc(); Non-Send types prevent impl Future from being Send ; less compatible.

 Here we assume s is any non-local that could temporarily be put into an invalid state; TL is any thread local storage, and that the async {}

containing the code is written without assuming executor specifics.
 Since Drop is run in any case when Future is dropped, consider using drop guard that cleans up / fixes application state if it has to be left in bad

condition across .await points.

1

🛑

🛑

🛑 2

1

2

STD

STD STD

*

*

Safe Code

Safe Code

Safe has narrow meaning in Rust, vaguely 'the intrinsic prevention of undefined behavior (UB)'.
Intrinsic means the language won't allow you to use itself to cause UB.

https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html
https://doc.rust-lang.org/stable/reference/expressions/closure-expr.html
https://doc.rust-lang.org/std/macro.thread_local.html
http://www.randomhacks.net/2019/03/09/in-nightly-rust-await-may-never-return/
https://doc.rust-lang.org/std/ops/trait.Drop.html

68

Making an airplane crash or deleting your database is not UB, therefore 'safe' from Rust's perspective.
Writing to /proc/[pid]/mem to self-modify your code is also 'safe', resulting UB not caused intrinsincally.

let y = x + x; �� Safe Rust only guarantees the execution of this code is consistent with
print(y); �� 'specif�cation' (long story …). It does not guarantee that y is 2x
 �� (X��add might be implemented badly) nor that y is printed (Y��fmt may
panic).

Unsafe Code

Unsafe Code

Code marked unsafe has special permissions, e.g., to deref raw pointers, or invoke other unsafe functions.
Along come special promises the author must uphold to the compiler, and the compiler will trust you.
By itself unsafe code is not bad, but dangerous, and needed for FFI or exotic data structures.

�� `x` must always point to race�free, valid, aligned, initialized u8 memory.
unsafe fn unsafe_f(x: �mut u8) {
 my_native_lib(x);
}

Undefined Behavior

Undefined Behavior (UB)

As mentioned, unsafe code implies special promises to the compiler (it wouldn't need be unsafe otherwise).
Failure to uphold any promise makes compiler produce fallacious code, execution of which leads to UB.
After triggering undefined behavior anything can happen. Insidiously, the effects may be 1) subtle, 2) manifest
far away from the site of violation or 3) be visible only under certain conditions.
A seemingly working program (incl. any number of unit tests) is no proof UB code might not fail on a whim.
Code with UB is objectively dangerous, invalid and should never exist.

if maybe_true() {
 let r: &u8 = unsafe { &� null() }; �� Once this runs, ENTIRE app is undef�ned.
Even if
} else { �� line seemingly didn't do anything, app might
now run
 println!("the spanish inquisition"); �� both paths, corrupt database, or anything
else.
}

ptr��

Unsound Code

Unsound Code

Any safe Rust that could (even only theoretically) produce UB for any user input is always unsound.
As is unsafe code that may invoke UB on its own accord by violating above-mentioned promises.

https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html

69

Responsible use of Unsafe

Do not use unsafe unless you absolutely have to.

Follow the Nomicon, Unsafe Guidelines, always follow all safety rules, and never invoke UB.

Minimize the use of unsafe and encapsulate it in small, sound modules that are easy to review.

Never create unsound abstractions; if you can't encapsulate unsafe properly, don't do it.

Each unsafe unit should be accompanied by plain-text reasoning outlining its safety.

Adversarial Code

Adversarial code is safe 3 party code that compiles but does not follow API expectations, and might interfere with your own (safety) guarantees.

You author User code may possibly …

fn g<F� Fn()>(f: F) { … } Unexpectedly panic.

struct S<X� T> { … } Implement T badly, e.g., misuse Deref , …

macro_rules! m { … } Do all of the above; call site can have weird scope.

Risk Pattern Description

��repr(packed)] Packed alignment can make reference &s.x invalid.

impl … for S {} Any trait impl , esp. ops may be broken. In particular …

 impl Deref for S {} May randomly Deref , e.g., s.x �� s.x , or panic.

 impl PartialEq for S {} May violate equality rules; panic.

 impl Eq for S {} May cause s �� s ; panic; must not use s in HashMap & co.

 impl Hash for S {} May violate hashing rules; panic; must not use s in HashMap & co.

 impl Ord for S {} May violate ordering rules; panic; must not use s in BTreeMap & co.

 impl Index for S {} May randomly index, e.g., s[x] �� s[x] ; panic.

 impl Drop for S {} May run code or panic end of scope {} , during assignment s = new_s .

panic!() User code can panic any time, resulting in abort or unwind.

catch_unwind(�� s.f(panicky)) Also, caller might force observation of broken state in s .

let … = f(); Variable name can affect order of Drop execution.

 Notably, when you rename a variable from _x to _ you will also change Drop behavior since you change semantics. A variable named _x will have Drop��drop() executed at the end of

its scope, a variable named _ can have it executed immediately on 'apparent' assignment ('apparent' because a binding named _ means wildcard discard this, which will happen
as soon as feasible, often right away)!

Implications

Generic code cannot be safe if safety depends on type cooperation w.r.t. most () traits.

If type cooperation is needed you must use unsafe traits (prob. implement your own).

You must consider random code execution at unexpected places (e.g., re-assignments, scope end).

You may still be observable after a worst-case panic.

As a corollary, safe-but-deadly code (e.g., airplane_speed<T>()) should probably also follow these guides.

Unsound code is a stability and security risk, and violates basic assumption many Rust users have.

fn unsound_ref<T>(x: &T) �� &u128 { �� Signature looks safe to users. Happens to be
 unsafe { transmute(x) } �� ok if invoked with an &u128, UB for practically
} �� everything else.

mem��

💬

🝖

rd

std�� std��

1 🛑

1

REF

std��

https://doc.rust-lang.org/nightly/nomicon/
https://rust-lang.github.io/unsafe-code-guidelines/
https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/stable/reference/patterns.html#wildcard-pattern
https://doc.rust-lang.org/stable/reference/patterns.html#wildcard-pattern

70

API Stability

When updating an API, these changes can break client code. Major changes (🔴) are definitely breaking, while minor changes (🟡) might be
breaking:

Crates

🔴 Making a crate that previously compiled for stable require nightly.

🟡 Altering use of Cargo features (e.g., adding or removing features).

Modules

🔴 Renaming / moving / removing any public items.

🟡 Adding new public items, as this might break code that does use * .

Structs

🔴 Adding private field when all current fields public.

🔴 Adding public field when no private field exists.

🟡 Adding or removing private fields when at least one already exists (before and after the change).

🟡 Going from a tuple struct with all private fields (with at least one field) to a normal struct, or vice versa.

Enums

🔴 Adding new variants; can be mitigated with early ��non_exhaustive]

🔴 Adding new fields to a variant.

Traits

🔴 Adding a non-defaulted item, breaks all existing impl T for S {} .

🔴 Any non-trivial change to item signatures, will affect either consumers or implementors.

🟡 Adding a defaulted item; might cause dispatch ambiguity with other existing trait.

🟡 Adding a defaulted type parameter.

Traits

🔴 Implementing any "fundamental" trait, as not implementing a fundamental trait already was a promise.

🟡 Implementing any non-fundamental trait; might also cause dispatch ambiguity.

Inherent Implementations

🟡 Adding any inherent items; might cause clients to prefer that over trait fn and produce compile error.

Signatures in Type Definitions

🔴 Tightening bounds (e.g., <T> to <T� Clone>).

🟡 Loosening bounds.

🟡 Adding defaulted type parameters.

🟡 Generalizing to generics.

Signatures in Functions

🔴 Adding / removing arguments.

🟡 Introducing a new type parameter.

🟡 Generalizing to generics.

Behavioral Changes

🔴 / 🟡 Changing semantics might not cause compiler errors, but might make clients do wrong thing.

RFC

your_crate��

REF

https://rust-lang.github.io/rfcs/1105-api-evolution.html
https://rust-lang.github.io/rfcs/1105-api-evolution.html
https://doc.rust-lang.org/stable/reference/attributes/type_system.html#the-non_exhaustive-attribute
https://doc.rust-lang.org/stable/reference/attributes/type_system.html#the-non_exhaustive-attribute

71

Ralf Biedert, 2024 — cheats.rs

https://xr.io/
https://cheats.rs/

